Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
基本信息
- 批准号:2055233
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to harden machine learning based security defenses by improving their ability to handle dynamic changes. From data breaches to ransomware infections, the increasingly sophisticated attacks are posing a serious threat to Internet-enabled systems and their users. While machine learning has shown great promise to build the next generation of defense, these defense systems are vulnerable to the dynamic changes (or concept drift) in the data caused by attacker evolvement and behavior changes of benign players. Traditionally, detecting and mitigating the impact of concept drift requires significant efforts to label new data, which is challenging to scale up. In this project, the team of researchers will design novel schemes to improve the adaptability and resilience of learning-based defenses that require minimal labeling capacity. The core idea is to use self-supervised learning models, utilizing unlabeled data and obtaining supervision from the data itself. If successful, the project will provide the much-needed tools to measure, detect, and mitigate concept drift for security applications, including malware analysis, network intrusion detection, and bot detection.The team of researchers will first focus on measuring concept drift over longitudinal data. With a focus on real-world malware samples, the team will develop measurement tools to extract and characterize different types of concept drift to understand their patterns. In the next stage, the team will develop reactive methods to detect drifting samples via contrastive learning (a form of self-supervision), and methods to select drifting samples to facilitate efficient labeling. Finally, the team will move from reactive defense to proactive approaches. The plan is to use adversarial generative models (another form of self-supervision) to synthesize richer data and labels that mimic future mutations of attackers, which will be used to harden the defenses at the training stage. The proposed techniques are expected to reduce the data labeling costs for learning-based defenses and improve their long-term sustainability to protect users, organizations, and critical infrastructures. The team will also leverage this project to recruit and mentor underrepresented students, develop new course materials, and perform technology transfer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过提高基于机器学习的安全防御系统处理动态变化的能力来加强其安全性。从数据泄露到勒索软件感染,日益复杂的攻击对互联网系统及其用户构成了严重威胁。虽然机器学习在构建下一代防御方面表现出了巨大的潜力,但这些防御系统容易受到攻击者演变和良性参与者行为变化引起的数据动态变化(或概念漂移)的影响。传统上,检测和减轻概念漂移的影响需要大量的工作来标记新数据,这对扩大规模具有挑战性。在这个项目中,研究人员团队将设计新的方案,以提高基于学习的防御的适应性和弹性,这些防御需要最小的标记能力。其核心思想是使用自监督学习模型,利用未标记的数据并从数据本身获得监督。如果成功,该项目将提供急需的工具来测量,检测和减轻安全应用程序的概念漂移,包括恶意软件分析,网络入侵检测和机器人检测。研究人员团队将首先专注于测量纵向数据的概念漂移。该团队将专注于真实世界的恶意软件样本,开发测量工具来提取和表征不同类型的概念漂移,以了解它们的模式。在下一阶段,该团队将开发通过对比学习(一种自我监督的形式)检测漂移样本的反应性方法,以及选择漂移样本以促进有效标记的方法。最后,团队将从被动防御转向主动防御。该计划是使用对抗生成模型(另一种形式的自我监督)来合成更丰富的数据和标签,以模拟攻击者未来的突变,这些数据和标签将用于在训练阶段加强防御。预计这些技术将降低基于学习的防御的数据标签成本,并提高其长期可持续性,以保护用户,组织和关键基础设施。该团队还将利用这个项目来招募和指导代表性不足的学生,开发新的课程材料,并进行技术转让。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Everybody’s Got ML, Tell Me What Else You Have: Practitioners’ Perception of ML-Based Security Tools and Explanations
- DOI:10.1109/sp46215.2023.10179321
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Jaron Mink;Hadjer Benkraouda;Limin Yang;A. Ciptadi;Aliakbar Ahmadzadeh;Daniel Votipka;Gang Wang
- 通讯作者:Jaron Mink;Hadjer Benkraouda;Limin Yang;A. Ciptadi;Aliakbar Ahmadzadeh;Daniel Votipka;Gang Wang
Is It Overkill? Analyzing Feature-Space Concept Drift in Malware Detectors
- DOI:10.1109/spw59333.2023.00007
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Zhi Chen;Zhenning Zhang;Zeliang Kan;Limin Yang;Jacopo Cortellazzi;Feargus Pendlebury;Fabio Pierazzi;L. Cavallaro;Gang Wang
- 通讯作者:Zhi Chen;Zhenning Zhang;Zeliang Kan;Limin Yang;Jacopo Cortellazzi;Feargus Pendlebury;Fabio Pierazzi;L. Cavallaro;Gang Wang
An In-depth Analysis of Duplicated Linux Kernel Bug Reports
- DOI:10.14722/ndss.2022.24159
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dongliang Mu;Yuhang Wu;Yueqi Chen;Zhenpeng Lin;Chensheng Yu;Xinyu Xing;Gang Wang
- 通讯作者:Dongliang Mu;Yuhang Wu;Yueqi Chen;Zhenpeng Lin;Chensheng Yu;Xinyu Xing;Gang Wang
It's Not What It Looks Like: Manipulating Perceptual Hashing based Applications
- DOI:10.1145/3460120.3484559
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Qingying Hao;Licheng Luo;Steve T. K. Jan;Gang Wang
- 通讯作者:Qingying Hao;Licheng Luo;Steve T. K. Jan;Gang Wang
DeepPhish: Understanding User Trust Towards Artificially Generated Profiles in Online Social Networks
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Jaron Mink;Licheng Luo;N. Barbosa;Olivia Figueira;Yang Wang;Gang Wang
- 通讯作者:Jaron Mink;Licheng Luo;N. Barbosa;Olivia Figueira;Yang Wang;Gang Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Wang其他文献
Effect of Cu Doping on Structure and Physical Properties in the Antiferromagnetic Dirac Semimetal CaMnBi2
Cu掺杂对反铁磁狄拉克半金属CaMnBi2结构和物理性能的影响
- DOI:
10.1021/acs.inorgchem.1c03410 - 发表时间:
2022 - 期刊:
- 影响因子:4.6
- 作者:
Zijing Zhang;Zhongnan Guo;Jiawei Lin;Fan Sun;Xue Han;Gang Wang;Wenxia Yuan - 通讯作者:
Wenxia Yuan
Novel PLGGE Graft Polymeric Micelles for Doxorubicin Delivery
用于阿霉素递送的新型 PLGGE 接枝聚合物胶束
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bin He;Mingming Sheng;Gang Wang;Zhongwei Gu - 通讯作者:
Zhongwei Gu
Talaromyces marneffei promotes M2 polarization of human macrophages by downregulating SOCS3 expression and activating TLR9 pathway
马尔尼菲踝节菌通过下调SOCS3表达和激活TLR9通路促进人巨噬细胞M2极化
- DOI:
10.1101/2021.02.17.431726 - 发表时间:
2021-02 - 期刊:
- 影响因子:5.2
- 作者:
Wudi Wei;Chuanyi Ning;Jiegang Huan;Gang Wang;Jingzhen Lai;Jing Han;Jinhao He;Hong Zhang;Bingyu Liang;Yanyan Liao;Thuy Le;Qiang Luo;Zhen Li;Junjun Jiang;Li Ye;Hao Liang - 通讯作者:
Hao Liang
光燃料電池中のTiO2およびBiOCl光触媒の改良
光燃料电池中 TiO2 和 BiOCl 光催化剂的改进
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gang Wang;Kota Yamazaki;Manabu Tanaka;Hiroyoshi Kawakami;吉羽真緒・小倉優太・泉 康雄 - 通讯作者:
吉羽真緒・小倉優太・泉 康雄
Effect of ion beam etching on surface/subsurface structural defect evolution in fused silica optics
离子束蚀刻对熔融石英光学器件表面/次表面结构缺陷演变的影响
- DOI:
10.1016/j.optmat.2021.111096 - 发表时间:
2021-06 - 期刊:
- 影响因子:3.9
- 作者:
Xiang He;Chao Cai;Heng Zhao;Gang Wang;Liang Lv;Dingyao Yan;Ping Ma - 通讯作者:
Ping Ma
Gang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Wang', 18)}}的其他基金
Travel: NSF Student Travel Grant for the 2023 ACM International Conference on Mobile Systems, Applications, and Services (MobiSys)
旅行:NSF 学生为 2023 年 ACM 移动系统、应用程序和服务国际会议 (MobiSys) 提供的旅行补助金
- 批准号:
2325485 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
- 批准号:
1955719 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Machine Learning Assisted Crowdsourcing for Phishing Defense
职业:机器学习辅助众包网络钓鱼防御
- 批准号:
2030521 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CAREER: Machine Learning Assisted Crowdsourcing for Phishing Defense
职业:机器学习辅助众包网络钓鱼防御
- 批准号:
1750101 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Planning Grant: I/UCRC for Advanced Composites in Transportation Vehicles (ACTV)
规划补助金:I/UCRC 运输车辆先进复合材料 (ACTV)
- 批准号:
1361904 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant