CAREER: Machine Learning Assisted Crowdsourcing for Phishing Defense

职业:机器学习辅助众包网络钓鱼防御

基本信息

  • 批准号:
    2030521
  • 负责人:
  • 金额:
    $ 42.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project aims to address the growing threat of phishing attacks, messages that try to trick people into revealing sensitive information, by combining human and machine intelligence. Existing detection methods based on machine learning and blacklists are both brittle to new attacks and somewhat lenient, in order to avoid blocking legitimate messages; as a result, widely used email systems are vulnerable to carefully crafted phishing emails. To address this, the project team will develop systems that automatically block obvious scams while forwarding less certain cases to groups of crowd workers trained to detect phishing mails. To support these workers' decision-making, the team will develop novel explanations of the system's decision making that will highlight the aspects of both the message and its algorithm that triggered the need for human judgment. The system will also aggregate these crowd decisions to generate real-time phishing alerts that can be shared to both individual users and to email systems. The project will lead to advances in interpretable machine learning, an important topic given the increasing role that artificial intelligence and machine learning systems play in society, and also increase our ability to characterize the evolution of phishing attacks and the vulnerability of internet platforms and users to those attacks over time. The project team will also use the work as an important component of new courses on usable security and outreach programs to high school teachers and students to both educate them about and increase their participation in cybersecurity research.The work is organized around three main objectives: empirical characterization of phishing risks, developing accurate and interpretable machine learning models for phishing detection, and developing reliable crowdsourcing systems for phishing alerts. The team will assess phishing risks through developing analytics tools on the effective adoption and configuration of anti-spoofing protocols in email systems, using adversarial machine learning methods to conduct black box testing on existing phishing detectors, and creating reactive honeypots that entice and respond to phishing attacks in order to collect data on not just the initial phishing emails but on attackers' behaviors throughout the course of a successful phishing attack. The data collected on phishing emails will be used to develop the machine learning models, using Convolutional Neural Network and Long Short-Term Memory based deep learning techniques to generate both suspicious features and confidence estimates of individual decisions. The suspicious features will be used to generate interpretable security cues such as text annotations or icons by first creating simpler and more interpretable machine learning models such as decision trees that mimic the local detection boundary near the target emails in the feature space. Rules in the decision tree will be mapped back to interface elements and email content to provide the warnings, and these will be compared to generic email security warnings in a series of user studies that also model people's ability to detect phishing using a variety of cues, features, and media. Those individual models, along with the confidence estimates from the phishing detection model, will then be used to drive a crowdsourcing-based system where the models of individual users' quality will be aggregated to make reliable judgments around emails the models judge as too suspicious to pass but not suspicious enough to automatically filter.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在解决日益增长的网络钓鱼攻击威胁,通过结合人类和机器智能,试图欺骗人们泄露敏感信息的消息。现有的基于机器学习和黑名单的检测方法对新的攻击都很脆弱,而且为了避免阻止合法消息,有些宽容;因此,广泛使用的电子邮件系统很容易受到精心制作的网络钓鱼电子邮件的攻击。为了解决这个问题,项目团队将开发一种系统,可以自动阻止明显的诈骗,同时将不太确定的案例转发给经过培训的人群工作人员,以检测网络钓鱼邮件。为了支持这些工作人员的决策,该团队将开发对系统决策的新解释,这些解释将突出信息及其算法的各个方面,这些方面触发了对人类判断的需求。该系统还将汇总这些群体决策,以生成可以共享给个人用户和电子邮件系统的实时网络钓鱼警报。该项目将导致可解释机器学习的进步,这是一个重要的主题,因为人工智能和机器学习系统在社会中发挥的作用越来越大,并且还提高了我们描述网络钓鱼攻击演变以及互联网平台和用户随着时间的推移对这些攻击的脆弱性的能力。项目团队还将把这项工作作为高中教师和学生可用的安全和推广计划的新课程的重要组成部分,以教育他们并增加他们对网络安全研究的参与。这项工作围绕三个主要目标组织:网络钓鱼风险的经验表征,开发用于网络钓鱼检测的准确和可解释的机器学习模型,并开发可靠的网络钓鱼警报众包系统。该团队将通过开发分析工具来评估网络钓鱼风险,这些工具可以有效地采用和配置电子邮件系统中的反欺骗协议,使用对抗机器学习方法对现有网络钓鱼检测器进行黑盒测试,创建反应式蜜罐,引诱和响应网络钓鱼攻击,不仅收集最初的网络钓鱼电子邮件数据,还收集攻击者在整个网络钓鱼过程中的行为数据。成功的网络钓鱼攻击从网络钓鱼电子邮件中收集的数据将用于开发机器学习模型,使用卷积神经网络和基于长短期记忆的深度学习技术来生成可疑特征和个人决策的置信度估计。可疑特征将用于生成可解释的安全提示,例如文本注释或图标,方法是首先创建更简单、更可解释的机器学习模型,例如模仿特征空间中目标电子邮件附近的本地检测边界的决策树。决策树中的规则将被映射回界面元素和电子邮件内容以提供警告,这些将与一系列用户研究中的通用电子邮件安全警告进行比较,这些用户研究还模拟了人们使用各种线索,功能和媒体检测网络钓鱼的能力。这些单独的模型,沿着来自网络钓鱼检测模型的置信度估计,将被用来推动众包基于系统的个人用户的质量模型将被聚合,以围绕模型判断为太可疑而不能通过但又不足以自动过滤的电子邮件做出可靠的判断。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing Browser-level Defense against IDN-based Phishing
评估针对基于 IDN 的网络钓鱼的浏览器级防御
Measuring DNS-over-HTTPS performance around the world
测量全球 DNS-over-HTTPS 性能
  • DOI:
    10.1145/3487552.3487849
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chhabra, Rishabh;Murley, Paul;Kumar, Deepak;Bailey, Michael;Wang, Gang
  • 通讯作者:
    Wang, Gang
Can you trust what you see online?
你能相信你在网上看到的吗?
  • DOI:
    10.33424/futurum381
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Gang;Mink, Jaron
  • 通讯作者:
    Mink, Jaron
Explaining Why Fake Photos are Fake: Does It Work?
解释为什么假照片是假的:它有效吗?
End-to-End Measurements of Email Spoofing Attacks
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hang Hu;G. Wang
  • 通讯作者:
    Hang Hu;G. Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Wang其他文献

Effect of Cu Doping on Structure and Physical Properties in the Antiferromagnetic Dirac Semimetal CaMnBi2
Cu掺杂对反铁磁狄拉克半金属CaMnBi2结构和物理性能的影响
  • DOI:
    10.1021/acs.inorgchem.1c03410
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zijing Zhang;Zhongnan Guo;Jiawei Lin;Fan Sun;Xue Han;Gang Wang;Wenxia Yuan
  • 通讯作者:
    Wenxia Yuan
Novel PLGGE Graft Polymeric Micelles for Doxorubicin Delivery
用于阿霉素递送的新型 PLGGE 接枝聚合物胶束
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin He;Mingming Sheng;Gang Wang;Zhongwei Gu
  • 通讯作者:
    Zhongwei Gu
Talaromyces marneffei promotes M2 polarization of human macrophages by downregulating SOCS3 expression and activating TLR9 pathway
马尔尼菲踝节菌通过下调SOCS3表达和激活TLR9通路促进人巨噬细胞M2极化
  • DOI:
    10.1101/2021.02.17.431726
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wudi Wei;Chuanyi Ning;Jiegang Huan;Gang Wang;Jingzhen Lai;Jing Han;Jinhao He;Hong Zhang;Bingyu Liang;Yanyan Liao;Thuy Le;Qiang Luo;Zhen Li;Junjun Jiang;Li Ye;Hao Liang
  • 通讯作者:
    Hao Liang
光燃料電池中のTiO2およびBiOCl光触媒の改良
光燃料电池中 TiO2 和 BiOCl 光催化剂的改进
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gang Wang;Kota Yamazaki;Manabu Tanaka;Hiroyoshi Kawakami;吉羽真緒・小倉優太・泉 康雄
  • 通讯作者:
    吉羽真緒・小倉優太・泉 康雄
Effect of ion beam etching on surface/subsurface structural defect evolution in fused silica optics
离子束蚀刻对熔融石英光学器件表面/次表面结构缺陷演变的影响
  • DOI:
    10.1016/j.optmat.2021.111096
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiang He;Chao Cai;Heng Zhao;Gang Wang;Liang Lv;Dingyao Yan;Ping Ma
  • 通讯作者:
    Ping Ma

Gang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Wang', 18)}}的其他基金

Travel: NSF Student Travel Grant for the 2023 ACM International Conference on Mobile Systems, Applications, and Services (MobiSys)
旅行:NSF 学生为 2023 年 ACM 移动系统、应用程序和服务国际会议 (MobiSys) 提供的旅行补助金
  • 批准号:
    2325485
  • 财政年份:
    2023
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
  • 批准号:
    2055233
  • 财政年份:
    2021
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    1955719
  • 财政年份:
    2020
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning Assisted Crowdsourcing for Phishing Defense
职业:机器学习辅助众包网络钓鱼防御
  • 批准号:
    1750101
  • 财政年份:
    2018
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
Planning Grant: I/UCRC for Advanced Composites in Transportation Vehicles (ACTV)
规划补助金:I/UCRC 运输车辆先进复合材料 (ACTV)
  • 批准号:
    1361904
  • 财政年份:
    2014
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 42.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了