Regularity Questions in Linear and Nonlinear Partial Differential Equations

线性和非线性偏微分方程的正则性问题

基本信息

  • 批准号:
    2055244
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The project focuses on mathematical research in certain partial differential equations (PDE) that model phenomena in physics, engineering, materials science, and economics. The study of PDE arising in models for composite materials, in particular fiber reinforced materials, is of increasing importance due to industry's need to design for improved performance. The mathematical research of the Monge-Ampére equation and related equations has particularly significant applications in differential geometry and optimal mass transport such as, for example, constructing surfaces with prescribed Gaussian curvature and reflector/refractor design. The principal investigator (PI) will carry out research closely related to these topics and will attempt to address some of the open questions in these areas. He will engage graduate students and postdoctoral researchers in the work of the project.The PI will focus his attention on several questions in three main topical areas. First, he will develop new methods to study elliptic and parabolic equations with mixed boundary conditions and rough coefficients in nonsmooth domains by using tools from harmonic analysis and conformal maps, parabolic equations with nonlocal time derivatives or more generally with nonlocal derivatives in both space and time, and Kolmogorov equations of ultraparabolic (or hypoelliptic) type with measurable coefficients. Second, the PI will study the regularity theory for degenerate fully nonlinear equations, in particular the m-Hessian equation with optimal power, the degenerate quotient Hessian equations, and more general types of Hessian equations with elementary symmetric polynomials. Finally, regarding PDE arising in the study of composite materials, the PI is particularly interested in composites with Lipschitz inclusions, and quasilinear or singular/degenerate equations of this type, and will develop new methods for the analysis of these PDE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目侧重于某些偏微分方程(PDE)的数学研究,这些偏微分方程模拟了物理,工程,材料科学和经济学中的现象。由于工业界需要设计改进的性能,在复合材料,特别是纤维增强材料的模型中产生的偏微分方程的研究越来越重要。蒙赫-安培方程和相关方程的数学研究在微分几何和最优质量输运中有着特别重要的应用,例如,构造具有规定高斯曲率的表面和反射器/折射器设计。主要研究者(PI)将开展与这些主题密切相关的研究,并将尝试解决这些领域的一些开放性问题。他将吸引研究生和博士后研究人员参与项目的工作,主要研究者将集中精力研究三个主要领域的几个问题。首先,他将开发新的方法来研究椭圆和抛物方程的混合边界条件和粗糙系数在非光滑域使用工具从调和分析和保形映射,抛物方程与非本地时间导数或更一般的非本地衍生物在空间和时间,和Kolmogorov方程的超抛物(或hypoelliptical)型可测系数。第二,PI将研究退化完全非线性方程的正则性理论,特别是具有最佳幂的m-Hessian方程,退化商Hessian方程以及具有初等对称多项式的更一般类型的Hessian方程。最后,关于复合材料研究中出现的偏微分方程,PI对含Lipschitz夹杂物的复合材料以及此类准线性或奇异/退化方程特别感兴趣,并将开发分析这些偏微分方程的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weighted mixed norm estimates for fractional wave equations with VMO coefficients
  • DOI:
    10.1016/j.jde.2022.07.040
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hongjie Dong;Yanze Liu
  • 通讯作者:
    Hongjie Dong;Yanze Liu
Gradient estimates for singular parabolic p-Laplace type equations with measure data
具有测量数据的奇异抛物线 p-拉普拉斯型方程的梯度估计
Time Fractional Parabolic Equations with Measurable Coefficients and Embeddings for Fractional Parabolic Sobolev Spaces
具有可测系数的时间分数抛物型方程和分数抛物型Sobolev空间的嵌入
Optimal Regularity of Mixed Dirichlet-Conormal Boundary Value Problems for Parabolic Operators
抛物算子混合狄利克雷-协正边值问题的最优正则性
Mixed boundary value problems for parabolic equations in Sobolev spaces with mixed-norms
混合范数 Sobolev 空间中抛物线方程的混合边值问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongjie Dong其他文献

Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness
  • DOI:
    10.3934/dcds.2010.26.1197
  • 发表时间:
    2007-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjie Dong
  • 通讯作者:
    Hongjie Dong
Boundedness of non-local operators with spatially dependent coefficients and $$L_p$$ L p -estimates for non-local equations
具有空间相关系数和非局部方程的 $$L_p$$ L p 估计的非局部算子的有界性
Well-posedness for a transport equation with nonlocal velocity
  • DOI:
    10.1016/j.jfa.2008.08.005
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hongjie Dong
  • 通讯作者:
    Hongjie Dong
On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients
具有Dini平均振荡系数的椭圆方程的共正规和斜导数问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjie Dong;Jihoon Lee;Seick Kim
  • 通讯作者:
    Seick Kim
Nonlocal Elliptic and Parabolic Equations with General Stable Operators in Weighted Sobolev Spaces
加权Sobolev空间中具有一般稳定算子的非局部椭圆和抛物方程

Hongjie Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongjie Dong', 18)}}的其他基金

Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Topics in Regularity Theory of Partial Differential Equations
偏微分方程正则论专题
  • 批准号:
    1600593
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
  • 批准号:
    1056737
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Research topics in partial differential equations
偏微分方程研究课题
  • 批准号:
    0800129
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
  • 批准号:
    ST/Y005848/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
  • 批准号:
    480806
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
  • 批准号:
    2883720
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
  • 批准号:
    2319080
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2313466
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226553
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226601
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
  • 批准号:
    480813
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
  • 批准号:
    487935
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
  • 批准号:
    2879630
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了