Research topics in partial differential equations

偏微分方程研究课题

基本信息

  • 批准号:
    0800129
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This project focuses on several topics in partial differential equations, both single equations and systems of equations, and considers problems involving fully nonlinear elliptic equations, evolutionary equations that arise in fluid mechanics, and error bounds for numerical approximations to solutions of fully nonlinear elliptic and parabolic equations. The first part of the project deals with the regularity of a family of fully nonlinear degenerate elliptic equations. These equations turn up in the optimal mass transport problem and in geometry. The second part is the investigation of global regularity, blow-up phenomena, partial regularity, and regularity criteria for several models of nonlinear parabolic equations in fluid mechanics. These include the well-known Navier-Stokes equations, the quasi-geostrophic equations, and some other related models. The third component is a study of error estimates for finite-difference approximations to solutions of fully nonlinear and possibly degenerate elliptic and parabolic Bellman equations. Bellman equations surface in many areas of mathematics (e.g., control theory, mathematical finance, differential geometry). It is thus a natural problem to seek numerical methods for approximating solutions to such equations. The fourth portion of the project concentrates on the theory of second-order linear elliptic and parabolic systems. A crucial difference between scalar equations and systems is that the classical maximum principle and the Harnack inequality are no longer applicable for systems.The projects described in the previous paragraph are interesting not only from a mathematical perspective. They are also of central importance and have significant applications in areas such as physics, economics, and finance. For instance, one application occurs in the area of fluid mechanics and turbulence, where one would like to estimate external flow over all kind of vehicles such as cars, airplanes, ships and submarines, to understand the formation of hurricanes, or to predict the earth's atmospheric circulation. These examples are all related to the three-dimensional Navier-Stokes equations, the theory of which is far from complete. Another important application is in finance, say, to calculate numerically the expected performance of a stock portfolio. For example, the Black-Scholes option pricing model in finance, which is a well-known mathematical model of the market for equity, is closely related to the partial differential equation that governs heart flow. Moreover, many of these problems are naturally modeled as coupled systems of partial differential systems rather than as single equations. The results obtained under this research will help to improve the mathematical models that are used in such applications.
该项目侧重于偏微分方程的几个主题,包括单个方程和方程组,并考虑涉及完全非线性椭圆方程的问题,流体力学中出现的演化方程,以及完全非线性椭圆和抛物方程解的数值近似的误差界。该项目的第一部分涉及一族完全非线性退化椭圆方程的正则性。这些方程出现在最优质量输运问题和几何学中。第二部分是对流体力学中几个非线性抛物方程模型的整体正则性、爆破现象、部分正则性和正则性准则的研究。这些模型包括著名的Navier-Stokes方程、准地转方程和其他一些相关的模型。第三部分是研究完全非线性和可能退化的椭圆和抛物Bellman方程的有限差分近似解的误差估计。贝尔曼方程出现在许多数学领域(例如,控制理论、金融数学、微分几何)。因此,寻求数值方法来近似解这样的方程是一个自然的问题。第四部分的项目集中在二阶线性椭圆和抛物系统的理论。标量方程和系统之间的一个关键区别是经典的最大值原理和Harnack不等式不再适用于系统。前一段中描述的项目不仅从数学角度来看是有趣的。它们在物理学、经济学和金融学等领域也具有核心重要性和重要应用。例如,一种应用出现在流体力学和湍流领域,其中人们想要估计在诸如汽车、飞机、船舶和潜艇的所有种类的交通工具上的外部流,以理解飓风的形成,或者预测地球的大气环流。这些例子都与三维Navier-Stokes方程有关,其理论还远未完成。另一个重要的应用是在金融领域,比如,用数字计算股票投资组合的预期表现。例如,金融学中的布莱克-斯科尔斯期权定价模型(Black-Scholes option pricing model)是一个著名的股票市场数学模型,它与控制心脏血流的偏微分方程密切相关。此外,这些问题中的许多问题自然地被建模为偏微分系统的耦合系统,而不是单个方程。根据这项研究所获得的结果将有助于改善在这些应用中使用的数学模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongjie Dong其他文献

Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness
  • DOI:
    10.3934/dcds.2010.26.1197
  • 发表时间:
    2007-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjie Dong
  • 通讯作者:
    Hongjie Dong
Boundedness of non-local operators with spatially dependent coefficients and $$L_p$$ L p -estimates for non-local equations
具有空间相关系数和非局部方程的 $$L_p$$ L p 估计的非局部算子的有界性
Well-posedness for a transport equation with nonlocal velocity
  • DOI:
    10.1016/j.jfa.2008.08.005
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hongjie Dong
  • 通讯作者:
    Hongjie Dong
On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients
具有Dini平均振荡系数的椭圆方程的共正规和斜导数问题
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjie Dong;Jihoon Lee;Seick Kim
  • 通讯作者:
    Seick Kim
Nonlocal Elliptic and Parabolic Equations with General Stable Operators in Weighted Sobolev Spaces
加权Sobolev空间中具有一般稳定算子的非局部椭圆和抛物方程

Hongjie Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongjie Dong', 18)}}的其他基金

Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
  • 批准号:
    2055244
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Topics in Regularity Theory of Partial Differential Equations
偏微分方程正则论专题
  • 批准号:
    1600593
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
  • 批准号:
    1056737
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似海外基金

Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Topics in Analysis, Spectral Theory, and Partial Differential Equations
分析、谱理论和偏微分方程主题
  • 批准号:
    2054465
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Stability analysis for inverse problems of fractional partial differential equations and related topics
分数阶偏微分方程反问题的稳定性分析及相关主题
  • 批准号:
    19K23400
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
  • 批准号:
    1900801
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Partial differential equations with the total mass conservation and related topics of abstract approach
具有总质量守恒的偏微分方程及抽象方法的相关主题
  • 批准号:
    17K05321
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FOR 2402: Rough Paths, Stochastic Partial Differential Equations and Related Topics
FOR 2402:粗糙路径、随机偏微分方程及相关主题
  • 批准号:
    277012070
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Units
Topics in Dispersive Partial Differential Equations and Harmonic Analysis
色散偏微分方程和调和分析主题
  • 批准号:
    1600444
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Topics in Regularity Theory of Partial Differential Equations
偏微分方程正则论专题
  • 批准号:
    1600593
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Topics in Harmonic Analysis: Interplay between Time-Frequency Analysis, Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析、加法组合学和偏微分方程之间的相互作用
  • 批准号:
    1500958
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Topics in Optimal Transport and Nonlinear Partial Differential Equations
最优输运和非线性偏微分方程主题
  • 批准号:
    1515871
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了