Analysis of Nonlinear Partial Differential Equations in Free Boundary Fluid Dynamics, Mathematical Biology, and Kinetic Theory

自由边界流体动力学、数学生物学和运动理论中的非线性偏微分方程分析

基本信息

  • 批准号:
    2055271
  • 负责人:
  • 金额:
    $ 34.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop new methods to advance the current level of scientific knowledge on a diverse collection of recognized questions in two different areas of the mathematical analysis of nonlinear partial differential equations (PDE) and to develop new mathematical methods to study these systems. The first part of the project concerns basic questions in the analysis of partial differential equations in Mathematical Biology. The second part of this project concerns the study of partial differential equations from kinetic theory in the presence of the physical kinetic boundary conditions. This project will involve training in research and teaching of postdoctoral researchers, graduate students, and undergraduate students from the University of Pennsylvania and other Universities. The project will also involve outreach to undergraduate students through the University of Pennsylvania Center for Undergraduate Research & Fellowships program. The principal investigator (PI) is fully committed to facilitating the training and education of these students through teaching courses, regular direct mentoring, and running regular research seminars. The PI is actively working to develop new innovative mathematics courses at the University of Pennsylvania in order to further the goal of developing a diverse and globally competitive STEM workforce and to improve STEM education at the collegiate level. The PI is engaging in outreach activities to groups that are traditionally underrepresented in mathematics, and these activities will continue over the course of this project. The PI is further consistently working to increase the scientific knowledge of the community by giving national and international research presentations. The results of this project will be further disseminated through publication in journal articles and they will be posted on the PI's website. Problems in which an elastic structure interacts with the surrounding fluid, called Fluid-Structure Interaction (FSI) problems, are plentiful in science and engineering. These problems have many applications in Physics, Biology, and the Medical Sciences. Such FSI problems include the mathematical modeling of the flying of birds, the swimming of fish, and blood flow through the heart and blood vessels. FSI models have been intensively studied using computational methods. Many numerical algorithms have been developed for such problems, and the scientific computing of FSI problems continues to be a very active area of research. Despite their importance, these computational methods are poorly understood from an analytical standpoint. A major impediment for numerical analysis has been the lack of analytical understanding of the underlying nonlinear partial differential equations. A better theoretical understanding of the analytical aspects of these PDE should lead to improved computational algorithms for FSI problems. The PI seeks to address these issues by focusing on a set of canonical analytical FSI problems in the Stokes flow. The second part of this project is in kinetic theory. The Landau equation with Coulomb potential and the non-cutoff Boltzmann equation for the long-range interaction potentials are two fundamental mathematical models in collisional kinetic theory which describe the dynamics of a non-equilibrium rarefied gas and a dilute hot plasma. Plasmas appear in fundamental physical problems from Astrophysics, Nuclear fusion, and Tokamaks. The Boltzmann equation has been used as a mathematical model in a wide variety of places, for instance in high atmosphere aerodynamics, where the air is a very rarefied gas and fluid equations are probably not sufficient. Further, the study of boundary effects for these kinetic equations is physically very important because they describe the interaction, in the form of drag and heat transfer, between gas or plasma and a solid body. The objective of this research in both parts of the project is to fully understand the local-in-time well-posedness for large initial data, and the global-in-time well-posedness in a close to equilibrium setting, for several different fundamental physical models in nonlinear PDE. We expect that the techniques developed as part of this project will be useful for future mathematical and physical developments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的方法,以提高当前在非线性偏微分方程(PDE)数学分析的两个不同领域中各种公认问题的科学知识水平,并开发新的数学方法来研究这些系统。项目的第一部分涉及数学生物学中偏微分方程分析的基本问题。本课题的第二部分涉及在物理动力学边界条件下从动力学理论出发的偏微分方程的研究。该项目将对来自宾夕法尼亚大学和其他大学的博士后、研究生和本科生进行研究和教学培训。该项目还包括通过宾夕法尼亚大学本科生研究中心和奖学金项目向本科生进行拓展。首席研究员(PI)完全致力于通过教学课程、定期直接指导和定期举办研究研讨会来促进这些学生的培训和教育。PI正积极致力于在宾夕法尼亚大学开发新的创新数学课程,以进一步实现培养多样化和具有全球竞争力的STEM劳动力的目标,并改善大学水平的STEM教育。PI正在向传统上在数学方面代表性不足的群体开展外展活动,这些活动将在本项目的过程中继续进行。PI还通过发表国家和国际研究报告,不断努力增加社区的科学知识。该项目的结果将通过发表期刊文章进一步传播,并将在PI的网站上公布。弹性结构与周围流体相互作用的问题,称为流固相互作用(FSI)问题,在科学和工程中大量存在。这些问题在物理学、生物学和医学科学中有许多应用。这类FSI问题包括鸟的飞行、鱼的游泳以及血液在心脏和血管中的流动的数学建模。FSI模型已经使用计算方法进行了深入研究。针对这些问题已经开发了许多数值算法,并且FSI问题的科学计算仍然是一个非常活跃的研究领域。尽管这些计算方法很重要,但从分析的角度来看,人们对它们的理解却很差。数值分析的一个主要障碍是缺乏对潜在的非线性偏微分方程的解析理解。更好的理论理解这些PDE的分析方面应该导致改进FSI问题的计算算法。PI试图通过关注Stokes流中的一组规范分析FSI问题来解决这些问题。这个项目的第二部分是动力学理论。具有库仑势的朗道方程和具有远程相互作用势的非截止玻尔兹曼方程是碰撞动力学理论中描述非平衡稀薄气体和稀热等离子体动力学的两个基本数学模型。等离子体出现在天体物理学、核聚变和托卡马克的基本物理问题中。玻尔兹曼方程在很多地方被用作数学模型,例如在高大气空气动力学中,空气是一种非常稀薄的气体,流体方程可能是不够的。此外,研究这些动力学方程的边界效应在物理上是非常重要的,因为它们描述了气体或等离子体与固体之间以阻力和传热形式的相互作用。本项目两个部分的研究目标是充分理解非线性偏微分方程中几种不同基本物理模型在大初始数据下的局部时态适定性,以及在接近平衡状态下的全局时态适定性。我们期望作为该项目的一部分开发的技术将对未来的数学和物理发展有用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus
环空中二维轴对称相对论 Vlasov-Maxwell 系统的磁约束
  • DOI:
    10.3934/krm.2021039
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Jang, Jin Woo;Strain, Robert M.;Wong, Tak Kwong
  • 通讯作者:
    Wong, Tak Kwong
Propagation of Uniform Upper Bounds for the Spatially Homogeneous Relativistic Boltzmann Equation
空间齐次相对论玻尔兹曼方程的一致上界的传播
The Peskin problem with viscosity contrast
粘度对比的 Peskin 问题
  • DOI:
    10.2140/apde.2023.16.785
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    García-Juárez, Eduardo;Mori, Yoichiro;Strain, Robert M.
  • 通讯作者:
    Strain, Robert M.
On the Determinant Problem for the Relativistic Boltzmann Equation
  • DOI:
    10.1007/s00220-021-04101-2
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    James L. Chapman;Jin Woo Jang;Robert M. Strain
  • 通讯作者:
    James L. Chapman;Jin Woo Jang;Robert M. Strain
Global Mild Solutions of the Landau and Non‐Cutoff Boltzmann Equations
  • DOI:
    10.1002/cpa.21920
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Renjun Duan;Shuangqiang Liu;Shota Sakamoto;Robert M. Strain
  • 通讯作者:
    Renjun Duan;Shuangqiang Liu;Shota Sakamoto;Robert M. Strain
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Strain其他文献

BIBLIOGRAPHY OF ROBERT M. STRAIN
罗伯特·M·斯特兰的参考书目
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Gancedo;Eduardo García;Neel Patel;Robert Strain;Po‑Chun Kuo;Yoichiro Mori
  • 通讯作者:
    Yoichiro Mori
Implementation of Pediatric Anesthesia Emergence Delirium Scale
  • DOI:
    10.1016/j.jopan.2014.08.070
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Strain;Mary Woerner;Donna Dituri;Larry Heredita
  • 通讯作者:
    Larry Heredita

Robert Strain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Strain', 18)}}的其他基金

Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
  • 批准号:
    1764177
  • 财政年份:
    2018
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Topics in Fluid dynamics with free boundaries, and Kinetic theory
自由边界流体动力学和动力学理论主题
  • 批准号:
    1500916
  • 财政年份:
    2015
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
Analysis of non-linear partial differential equations in Kinetic theory and related fields
运动理论及相关领域非线性偏微分方程分析
  • 批准号:
    1200747
  • 财政年份:
    2012
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Continuing Grant
Topics in gas dynamics and fluid flow
气体动力学和流体流动主题
  • 批准号:
    0901463
  • 财政年份:
    2009
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0602513
  • 财政年份:
    2006
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Fellowship Award

相似海外基金

Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
  • 批准号:
    22K13939
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DMS-EPSRC: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    EP/V051121/1
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Research Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219391
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219434
  • 财政年份:
    2022
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055072
  • 财政年份:
    2021
  • 资助金额:
    $ 34.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了