Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
基本信息
- 批准号:2055130
- 负责人:
- 金额:$ 32.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Internal deep-water waves, ion-acoustic waves in a plasma, laser propagation in highly refractive materials, and collective particle behavior in very low temperature gases are all physical systems whose behavior in time is modeled by a nonlinear dispersive wave equation. The term "nonlinear" refers to a property of size-dependent response and the term "dispersive" refers to how the fluctuations of the wave influence the speed and direction of motion. At the mathematical level, one studies the behavior of general solutions and special types of solutions to these equations and seeks to provide quantitative descriptions of phenomena observed in the physical setting. In this project, the investigators explore how coherent waves travel - whether they retain their shape despite encountering obstacles, break apart and dissolve, or collapse into a singularity. Each of these possibilities hinges on both the nonlinear and the dispersive character of the equations; over the past several decades, mathematical techniques have been developed to model and measure these properties. The project aims to improve existing methods and apply the methods in new directions. The project contains educational efforts at various levels of mathematical learning. These include advising undergraduate and graduate students as well as postdoctoral scholars, with special emphasis on attracting underrepresented minorities. The main objective of the research will be to provide analytical descriptions of the behavior of solutions to certain classes of nonlinear dispersive equations. The two main categories of equations considered are the Korteweg-de Vries (KdV) family and the nonlinear Schrödinger (NLS) family. Both classes of equations satisfy powerful dispersive estimates called local virial estimates, and the KdV family in addition satisfies a monotonicity property that controls the movement of mass. The multiple-scale method, spectral analysis, application of dispersive estimates, and monotonicity bounds are core methods that will be utilized and extended. Several focus problems are identified in which some classical feature, like scale-invariance or a property of localized influence, have been removed or weakened, providing the stimulus to develop new techniques, while at the same time, provide new descriptions of real physical phenomena. The phenomena of primary interest are the dynamics of coherent structures like solitary waves and line solitons as they interact with each other and their environment, and the description of how singular collapsing solutions arise and their asymptotic description.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内部深水波,血浆中的离子声波,高度屈光材料中的激光传播以及非常低的温度气体中的集体颗粒行为都是物理系统,其时间的行为是通过非线性色散波等效性建模的。术语“非线性”是指尺寸依赖性响应的属性和术语“分散”是指波浪的波动如何影响运动的速度和方向。在数学层面,人们研究了这些方程式的一般解决方案和特殊类型的解决方案的行为,并试图提供对物理环境中观察到的现象的定量描述。在这个项目中,调查人员探讨了连贯的波浪行进 - 他们是否保留了遇到障碍,崩溃并溶解或崩溃成奇异的目的地的形状目的地。这些可能性中的每一个都取决于方程的非线性和分散性。在过去的几十年中,已经开发了数学技术来建模和衡量这些特性。该项目旨在改善现有方法并将方法应用于新的方向。该项目在数学学习的各个层面上包含教育工作。其中包括咨询本科生和研究生以及博士后学者,特别强调吸引代表性不足的少数民族。该研究的主要目的是为某些类别的非线性分散方程提供解决方案行为的分析描述。所考虑的方程式的两个主要类别是Korteweg-de Vries(KDV)家族和非线性Schrödinger(NLS)家族。两类方程式都满足称为局部病毒估计值的强大分散估计,而KDV家族还满足控制质量运动的单调性能。多尺度方法,光谱分析,分散估计的应用和单调性界限是将被利用和扩展的核心方法。确定了一些重点问题,其中某些经典特征(例如尺度变革或具有局部影响的特性)已被删除或削弱,从而提供了开发新技术的刺激,同时,提供了对真实物理现象的新描述。主要感兴趣的现象是连贯的结构的动力学,例如固体和固体彼此相互作用和环境,以及描述奇异崩溃解决方案以及其不对称描述的描述。这项奖项反映了NSF的法定任务,并通过使用基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Roudenko其他文献
Svetlana Roudenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Roudenko', 18)}}的其他基金
Joint Applied Mathematics and Statistics Scholarships
应用数学和统计学联合奖学金
- 批准号:
2221491 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Fifth Workshop on Nonlinear Dispersive Equations
第五届非线性色散方程研讨会
- 批准号:
2231021 - 财政年份:2022
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics Research Program for Undergraduates
REU 网站:本科生应用数学研究计划
- 批准号:
2050971 - 财政年份:2021
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1838371 - 财政年份:2018
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1927258 - 财政年份:2018
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
- 批准号:
1815873 - 财政年份:2018
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
- 批准号:
1929029 - 财政年份:2018
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1904139 - 财政年份:2018
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
International Conference on Partial Differential Equations (COPDE-2015)
国际偏微分方程会议(COPDE-2015)
- 批准号:
1535822 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
- 批准号:
1151618 - 财政年份:2012
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
数据驱动下双记忆混合控制船舶非线性耦合运动的随机动力学研究
- 批准号:12372033
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318951 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Wake Observations at a Kuroshio Seamount (NOKS)
合作研究:黑潮海山非线性尾流观测 (NOKS)
- 批准号:
2318952 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325172 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
eMB: Collaborative Research: ML/AI-assisted environmental scale microbial nonlinear metabolic models
eMB:协作研究:ML/AI 辅助的环境规模微生物非线性代谢模型
- 批准号:
2325171 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant