Stochastic Differential Equations, Heat Kernel Analysis, and Random Matrix Theory
随机微分方程、热核分析和随机矩阵理论
基本信息
- 批准号:1800733
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random processes dominate our world: from the fluctuations of stock prices, to the large-scale behavior of queueing systems in computer or biological networks, to the core behavior of quantum systems. Most science and engineering problems in part boil down to separating random noise from structure, or sometimes utilizing random noise to amplify structure. One of the great triumphs of 20th Century science was the development of many robust tools for understanding and analyzing random noise in many kinds of systems. One such set of tools is stochastic analysis, which presents a rigorous mathematical treatment of ideas that first appeared in physics, adding random noise to the equations of state that describe our world. These so-called stochastic differential equations have playing a fundamental role in advancing our knowledge in many area: economics, systems engineering, biological dynamics, and within mathematics, with applications to fields like differential geometry and quantum information theory.This project addresses questions relating stochastic differential equations, heat kernel analysis, and random matrix theory. The central theme is understanding how differential equations with some randomness affect the evolution of eigenvalues of random matrices. These ideas connect with geometry, since the flow of heat on Lie groups (groups of continuous symmetries of geometric objects) can be characterized by such matrix stochastic differential equations. Herein, ten research projects are proposed which yield connections between these topics and applications to others. Generally, these problems can be described as studying the large-dimension asymptotic behavior of geometrically-motivated matrix-valued stochastic differential equations. Of particular note are questions related to the fine (edge) structure of Brownian motion on high dimensional Lie groups from the classical compact families. The intended research, upon completion, will settle several interesting open questions and present a major contribution both to the theory of stochastic differential equations and random matrix theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随机过程主宰着我们的世界:从股票价格的波动,到计算机或生物网络中嵌入系统的大规模行为,再到量子系统的核心行为。 大多数科学和工程问题部分归结为从结构中分离随机噪声,或者有时利用随机噪声放大结构。 20世纪世纪科学的伟大成就之一是发展了许多强大的工具来理解和分析各种系统中的随机噪声。 其中一套工具是随机分析,它对最初出现在物理学中的思想进行了严格的数学处理,为描述我们世界的状态方程添加了随机噪声。 这些所谓的随机微分方程在推进我们在许多领域的知识中发挥了基础性作用:经济学,系统工程,生物动力学,以及在数学中,应用于微分几何和量子信息理论等领域。本项目解决与随机微分方程,热核分析和随机矩阵理论相关的问题。中心主题是理解具有一定随机性的微分方程如何影响随机矩阵特征值的演化。这些想法与几何学有关,因为李群(几何对象的连续对称群)上的热流可以用这样的矩阵随机微分方程来表征。 在此,提出了10个研究项目,这些项目产生这些主题和应用程序之间的联系。 这些问题通常可以归结为研究几何激励的矩阵值随机微分方程的高维渐近性态。 特别值得注意的是有关布朗运动的精细(边)结构的高维李群从经典紧家庭的问题。 预期的研究,完成后,将解决几个有趣的开放式问题,并提出了一个重大贡献的随机微分方程理论和随机矩阵theory.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brown measure support and the free multiplicative Brownian motion
- DOI:10.1016/j.aim.2019.106771
- 发表时间:2018-09
- 期刊:
- 影响因子:1.7
- 作者:B. Hall;Todd Kemp
- 通讯作者:B. Hall;Todd Kemp
Random matrices with log-range correlations, and log-Sobolev inequalities
具有对数范围相关性和对数 Sobolev 不等式的随机矩阵
- DOI:10.5802/ambp.396
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kemp, Todd;Zimmermann, David
- 通讯作者:Zimmermann, David
Fluctuations of Brownian motions on GLN
GLN 上布朗运动的涨落
- DOI:10.1214/21-aihp1165
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cébron, Guillaume;Kemp, Todd
- 通讯作者:Kemp, Todd
The complex-time Segal-Bargmann transform
复杂时间 Segal-Bargmann 变换
- DOI:10.1016/j.jfa.2019.108303
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Driver, Bruce K.;Hall, Brian C.;Kemp, Todd
- 通讯作者:Kemp, Todd
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Kemp其他文献
Strong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions
对数分谐波函数的强对数 Sobolev 不等式
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
P. Graczyk;Todd Kemp;J. Loeb - 通讯作者:
J. Loeb
$${\fancyscript{R}}$$ -diagonal dilation semigroups
- DOI:
10.1007/s00209-008-0455-x - 发表时间:
2008-12-02 - 期刊:
- 影响因子:1.000
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
Hypercontractivity for log-subharmonic functions
对数分谐波函数的超收缩性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Graczyk;Todd Kemp;J. Loeb;T. Żak - 通讯作者:
T. Żak
Heat Kernel Empirical Laws on $${\mathbb {U}}_N$$UN and $${\mathbb {GL}}_N$$GLN
$${mathbb {U}}_N$$UN 和 $${mathbb {GL}}_N$$GLN 的热核经验定律
- DOI:
10.1007/s10959-015-0643-7 - 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
The Large-N Limits of Brownian Motions on N
- DOI:
10.1093/imrn/rnv245 - 发表时间:
2016 - 期刊:
- 影响因子:1
- 作者:
Todd Kemp - 通讯作者:
Todd Kemp
Todd Kemp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Kemp', 18)}}的其他基金
Conference: Southern California Probability Symposium
会议:南加州概率研讨会
- 批准号:
2318731 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
- 批准号:
2055340 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CAREER: Free Probability and Connections to Random Matrices, Stochastic Analysis, and PDEs
职业:自由概率以及与随机矩阵、随机分析和偏微分方程的联系
- 批准号:
1254807 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Functional Inequalities in Global Analysis and Non-Communitative Geometry
全局分析和非交往几何中的函数不等式
- 批准号:
0701162 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Studies of the Stochastic Partial Differential Equations
随机偏微分方程的研究
- 批准号:
2246850 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Neural networks for stochastic partial differential equations
随机偏微分方程的神经网络
- 批准号:
2872613 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Studentship
Analysis of Stochastic Partial Differential Equations
随机偏微分方程的分析
- 批准号:
2245242 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
McKean Vlasov Stochastic Partial Differential Equations
McKean Vlasov 随机偏微分方程
- 批准号:
EP/W034220/1 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
- 批准号:
2884422 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Studentship
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Numerical methods for stochastic differential equations
随机微分方程的数值方法
- 批准号:
RGPIN-2018-04449 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Integrating stochastic programming, differential equations with deep learning methods for optimizing non-medical intervention policies
将随机规划、微分方程与深度学习方法相结合,优化非医疗干预政策
- 批准号:
RGPIN-2022-04519 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
- 批准号:
RGPIN-2020-06500 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual