Regularity Properties and K-Theory of Crossed Product Operator Algebras

叉积算子代数的正则性质与K理论

基本信息

  • 批准号:
    2055736
  • 负责人:
  • 金额:
    $ 11.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Algebra, analysis, geometry, and dynamics are some of the major branches of modern mathematics. Algebra studies the rules to work with mathematical symbols in ways that generalize addition and multiplication. Analysis deals with approximations of numbers, functions and other mathematical objects. Geometry concerns itself with notions such as shape, distance, angle, etc. Dynamics studies motions and in particular their long-term behaviors. This research project lies in the area of operator algebras and noncommutative geometry, which uses advanced techniques from algebra and analysis to study mathematical problems that are often geometrically and dynamically motivated. Outreach activities to foster communication and collaboration, especially among early-stage mathematicians will also be carried out.This project focuses on regularity properties and K-theory of operator algebras of dynamical nature, in particular, crossed product C*-algebras. It is motivated by applications in several areas of mathematical research. On the one hand, to further advance the (already spectacular) applications of noncommutative geometry to the celebrated Novikov conjecture in differential topology, the PI aims to study the K-theory of group C*-algebras of groups of diffeomorphisms on smooth manifolds. On the other hand, the classification program for simple separable nuclear C*-algebras has spawned and highlighted a number of regularity properties of C*-algebras, and the PI is working on transporting these properties to the dynamical setting, so as to aid future applications to the classification and structure theory of topological dynamical systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数、分析、几何和动力学是现代数学的一些主要分支。代数学研究的是以归纳加法和乘法的方式使用数学符号的规则。分析处理数字,函数和其他数学对象的近似值。几何学关注的是形状、距离、角度等概念。动力学研究运动,特别是它们的长期行为。该研究项目位于算子代数和非交换几何领域,使用代数和分析的先进技术来研究通常是几何和动态动机的数学问题。此外,亦会举办外展活动,以促进沟通和合作,特别是在早期数学家之间。本计划集中于动力性质的算子代数,特别是交叉积C*-代数的正则性和K-理论。它的动机是在数学研究的几个领域的应用。一方面,为了进一步推进非交换几何在微分拓扑学中著名的诺维科夫猜想中的应用(已经很壮观了),PI的目标是研究光滑流形上的群C*-代数的K-理论。另一方面,简单可分核C*-代数的分类程序已经产生并突出了C*-代数的许多正则性性质,PI正在努力将这些性质转移到动态设置中,从而有助于拓扑动力系统的分类和结构理论的未来应用。该奖项反映了NSF的法定使命,并通过评估被认为值得支持使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces
  • DOI:
    10.1007/s00039-021-00563-7
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Sherry Gong;Jianchao Wu;Guoliang Yu
  • 通讯作者:
    Sherry Gong;Jianchao Wu;Guoliang Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sherry Gong其他文献

Nonorientable link cobordisms and torsion order in Floer homologies
Floer 同调中的不可定向连杆配边和扭转顺序
  • DOI:
    10.2140/agt.2023.23.2627
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sherry Gong;Marco Marengon
  • 通讯作者:
    Marco Marengon
Property RD and the Classification of Traces on Reduced Group $C^*$-algebras of Hyperbolic Groups
双曲群约简群$C^*$-代数的性质RD和迹分类
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sherry Gong
  • 通讯作者:
    Sherry Gong
Khovanov homology and binary dihedral representations for marked links
  • DOI:
    10.1016/j.geomphys.2018.10.014
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sherry Gong
  • 通讯作者:
    Sherry Gong
Finite Part of Operator $K$-Theory for Groups with Rapid Decay
On a problem regarding coefficients of cyclotomic polynomials
  • DOI:
    10.1016/j.jnt.2009.04.008
  • 发表时间:
    2009-12
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Sherry Gong
  • 通讯作者:
    Sherry Gong

Sherry Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sherry Gong', 18)}}的其他基金

CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Continuing Grant

相似海外基金

Theory of physical properties of friction in macroscopic objects by continuum analysis
通过连续介质分析研究宏观物体摩擦物理性质的理论
  • 批准号:
    22KJ2190
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the origin of Anomalous Microwave Emission: Pioneering the theory on quantum properties of interstellar amorphous dust
阐明异常微波发射的起源:开创星际非晶尘埃量子特性理论
  • 批准号:
    22KJ0727
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
  • 批准号:
    2153053
  • 财政年份:
    2022
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Shedding Light on the Complex and Covariant Properties of Massive Halos with Theory and Observations
合作研究:通过理论和观测揭示大质量晕的复杂和协变特性
  • 批准号:
    2206695
  • 财政年份:
    2022
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Shedding Light on the Complex and Covariant Properties of Massive Halos with Theory and Observations
合作研究:通过理论和观测揭示大质量晕的复杂和协变特性
  • 批准号:
    2206696
  • 财政年份:
    2022
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Standard Grant
On the quality and properties of collective decision-making; an approach from information game theory
论集体决策的质量和属性;
  • 批准号:
    22K01407
  • 财政年份:
    2022
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Excited State Properties of Semiconductions and Insulators from Many Body Perturbation Theory
来自多体摄动理论的半导体和绝缘体的激发态性质
  • 批准号:
    2748355
  • 财政年份:
    2022
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Studentship
Development of dimensionless distribution theory with solute fundamental properties for prediction of subcritical fluid separation technique
发展具有溶质基本性质的无量纲分布理论,用于预测亚临界流体分离技术
  • 批准号:
    21H01685
  • 财政年份:
    2021
  • 资助金额:
    $ 11.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了