Collaborative Research: SHF: Small: RUI: Context-aware Models of Source Code Summarization
协作研究:SHF:小型:RUI:源代码摘要的上下文感知模型
基本信息
- 批准号:2100050
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to address key barriers towards automatic documentation generation for software source code. Programmers create software by writing instructions in source code. That source code is often very difficult to understand, and programmers often must spend significant time writing and updating natural language descriptions of the code to serve as a guide to other programmers. But programmers tend to avoid this task, leading to difficult-to-understand legacy code, bugs, struggles for novice programmers, and other problems. The process of writing these natural language descriptions is called "source code summarization" and this project aims to automate this process. The long-term goal of the project is that automatic documentation generation will improve productivity for software engineers, and increase the quality of software generally.The two key barriers that this project targets are: 1) context-aware models of code summarization, and 2) improved optimization and evaluation procedures for those models. The research towards item (1) centers on novel neural network-based algorithms for reading and understanding source code. The "context" of a section of source code includes the surrounding source code, dependencies and dependents, programmer communications, bug reports, architecture documentation, and many other software artifacts. This proposal aims to build new neural models of code that include this context such as attentional graph neural networks and dynamic memory networks. The research towards item (2) centers on improving the metrics used to evaluate models of source code summarization, as well as optimization functions used to train these models. This project includes both design of these metrics and functions, and experiments to evaluate them.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这一研究项目的目标是解决软件源代码文档自动生成的关键障碍。程序员通过在源代码中编写指令来创建软件。源代码通常很难理解,程序员通常必须花费大量时间编写和更新代码的自然语言描述,以作为其他程序员的指南。但程序员往往回避这一任务,导致难以理解的遗留代码、错误、新手程序员的困难,以及其他问题。编写这些自然语言描述的过程被称为“源代码摘要”,该项目旨在使这一过程自动化。该项目的长期目标是自动生成文档将提高软件工程师的工作效率,并总体上提高软件质量。该项目的目标是两个关键障碍:1)代码摘要的上下文感知模型,以及2)改进这些模型的优化和评估过程。对项目(1)的研究集中在基于神经网络的源代码阅读和理解的新算法上。一段源代码的“上下文”包括周围的源代码、依赖项和依赖项、程序员通信、错误报告、体系结构文档和许多其他软件构件。这一建议旨在建立包括这一背景的新的代码神经模型,如注意图神经网络和动态记忆网络。对项目(2)的研究集中在改进用于评估源代码摘要模型的度量,以及用于训练这些模型的优化函数。该项目包括这些指标和功能的设计,以及评估它们的实验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siyuan Jiang其他文献
On the Accuracy of Forward Dynamic Slicing and Its Effects on Software Maintenance
前向动态切片的准确性及其对软件维护的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Siyuan Jiang;Raúl A. Santelices;M. Grechanik;Haipeng Cai - 通讯作者:
Haipeng Cai
Spin–orbit torque reconfigurable diffraction gratings
自旋轨道扭矩可重构衍射光栅
- DOI:
10.1063/5.0201222 - 发表时间:
2024 - 期刊:
- 影响因子:4
- 作者:
Xiaolin Huang;Zitian Xu;Jiayang Liang;Biao Wu;Siyuan Jiang;Nan Gao - 通讯作者:
Nan Gao
Application of trajectory guide method in industrial robot on-line measurement
轨迹引导法在工业机器人在线测量中的应用
- DOI:
10.1117/12.2645544 - 发表时间:
2022 - 期刊:
- 影响因子:7.8
- 作者:
Yang An;Xixin Zhu;Xiaocen Wang;Siyuan Jiang;Xueyan Ma - 通讯作者:
Xueyan Ma
Methodologic considerations in estimating racial disparity of mortality among very preterm infants
- DOI:
10.1038/s41390-024-03485-w - 发表时间:
2024-08-23 - 期刊:
- 影响因子:3.100
- 作者:
Siyuan Jiang;Laura A. Rose;Jeffrey B. Gould;Mihoko V. Bennett;Jochen Profit;Henry C. Lee - 通讯作者:
Henry C. Lee
Characterization and expression pattern analysis of pheromone receptors like genes in Winter Mushroom Flammulina filiformis
- DOI:
https://doi.org/10.1007/s00203-020-01990-0 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Li Meng;Tiansheng Chou;Siyuan Jiang;Li Wang;Mengjuan Zhu;Irum Mukhtar;Baogui Xie;Wei Wang - 通讯作者:
Wei Wang
Siyuan Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant














{{item.name}}会员




