Collaborative Research: Learning Preferences and Domain Differences in Design Fixation
合作研究:设计固定中的学习偏好和领域差异
基本信息
- 批准号:2100137
- 负责人:
- 金额:$ 84.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning to design in formal engineering and design education often involves the study of existing designs as examples. Research has shown that the use of pictorial examples during the presentation of design problems can support the learning of engineering principles and design constraints. But it can also bias designers and engineering design students toward replicating the examples they were shown, even in the presence of explicit instructions not to do so, rather than seeking innovative alternative solutions. This phenomenon is known as design fixation—the tendency to adhere to elements of prior ideas or solutions to a problem. Design fixation is a significant barrier to the generation of new design ideas and creative problem solving. Intriguingly, preliminary research on engineering education has suggested there is a disciplinary difference in the tendency to show design fixation to pictorial examples, such that industrial designers are markedly less likely to fixate than are mechanical engineers. The goal of this project, a collaboration between cognitive neuroscience researchers at Drexel University and design scientists at the University of North Carolina, is to focus on this difference as a means of understanding the cognitive and neural processes underlying design fixation. The driving hypothesis is that, as a result of their training, mechanical engineering students are more likely to fixate because they are less apt to draw on abstract principles. The studies will involve a combination of behavioral and brain imaging studies of first year and fourth year undergraduate students in different design disciplines. The results of this project will have the potential to generalize across much of STEM education by informing the development of curricula to ward off design fixation. This award is made by the EHR Core Research (ECR) program, which supports work that advances the fundamental research literature on STEM learning.Drawing on the research literature in cognitive science, cognitive neuroscience, engineering education, and design science, this project will examine the premise that there are differences between undergraduate industrial design and mechanical engineering students in their tendencies to show design fixation and that these differences are arise from instruction that emphasizes the of abstraction (rule-based) learning in the former discipline and exemplar-based learning in the latter. The project will examine whether differences between students during concept building, captured by both behavioral and neural measures, can predict design fixation patterns. The researchers will collect multimodal data from first year and senior industrial design and mechanical engineering students on a design fixation task and a control design task. They will quantify design fixation behaviorally through (a) the coding of sketches according to an established design categorization scheme, and (b) the coding of verbal protocols with the established Function-Behavior-Structure (FBS) ontology for design. The FBS ontology segmentation and coding of verbal protocols will then be used in a novel attempt to analyze neural responses during the design fixation and control tasks. The behavioral and neural differences in learning tendencies – rule-based and exemplar based – between students in the two disciplines will then be used to predict behavioral and neural differences in design fixation. Ultimately, the investigators aim to put forth a mechanistic account of design fixation, grounded in cognitive neuroscience and design theory and practice, that will inform the development of instructional interventions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在正规的工程和设计教育中学习设计通常涉及对现有设计的研究。研究表明,在设计问题的演示过程中使用图形示例可以支持工程原理和设计约束的学习。但它也会使设计师和工程设计专业的学生倾向于复制他们所展示的例子,即使有明确的指示不要这样做,而不是寻求创新的替代解决方案。这种现象被称为设计固定倾向于坚持先前的想法或解决问题的方法。设计固定是产生新的设计思想和创造性解决问题的一个重要障碍。有趣的是,对工程教育的初步研究表明,在将设计固定于图形示例的倾向上存在学科差异,例如工业设计师明显不太可能比机械工程师更容易固定。这个项目是德雷克塞尔大学的认知神经科学研究人员和北卡罗来纳州大学的设计科学家之间的合作,其目标是关注这种差异,作为理解设计固定背后的认知和神经过程的一种手段。驱动假设是,由于训练的结果,机械工程专业的学生更有可能专注,因为他们不太容易利用抽象原理。这些研究将涉及不同设计学科的一年级和四年级本科生的行为和大脑成像研究的结合。该项目的结果将有可能通过为课程的开发提供信息来推广STEM教育,以避免设计固定。该奖项由EHR核心研究(ECR)计划颁发,该计划支持推进STEM学习基础研究文献的工作。借鉴认知科学,认知神经科学,工程教育和设计科学的研究文献,本研究将探讨工业设计与机械工程专业本科生在设计固定倾向上的差异,这些差异是由于前者强调抽象(基于规则)的学习,而后者强调基于范例的学习。该项目将研究学生之间的差异,在概念建设,捕获的行为和神经的措施,可以预测设计固定模式。研究人员将从一年级和高年级的工业设计和机械工程专业的学生中收集多模态数据,用于设计固定任务和控制设计任务。他们将通过以下方式量化设计固定行为:(a)根据已建立的设计分类方案对草图进行编码,以及(B)使用已建立的功能-行为-结构(FBS)设计本体对口头协议进行编码。FBS本体分割和编码的口头协议,然后将用于一种新的尝试,分析神经反应在设计固定和控制任务。行为和神经的学习倾向的差异-基于规则和基于范例-在这两个学科的学生之间,然后将被用来预测行为和神经的差异,在设计固定。最终,研究人员的目标是提出一个机械的设计固定帐户,在认知神经科学和设计理论和实践的基础上,这将通知教学干预的发展。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Board 344: Neural Correlates of Learning Preferences and Individual Differences in Design Fixation: Preliminary Evidence from Functional Magnetic Resonance Imaging (fMRI)
Board 344:学习偏好的神经关联和设计固着的个体差异:来自功能磁共振成像(fMRI)的初步证据
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chrysikou, E.G.
- 通讯作者:Chrysikou, E.G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelia Chrysikou其他文献
Evangelia Chrysikou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 84.01万 - 项目类别:
Standard Grant