Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
基本信息
- 批准号:2100436
- 负责人:
- 金额:$ 29.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elliptic curves (and their generalizations called abelian varieties) are fundamental mathematical objects that are also of great importance in other fields such as cryptography and error correcting codes. There are naturally occurring geometric spaces, called Shimura varieties, whose points classify different elliptic curves (and abelian varieties). Inside these spaces are orbits, called Hecke orbits. These orbits are not like the regular periodic orbits of the planets around the sun, but are highly unpredictable and chaotic. Indeed, each orbit is conjectured to be distributed equally throughout the Shimura variety. The principal investigator and his collaborators will use techniques from various areas of mathematics, including number theory, algebraic geometry and representation theory to study several aspects of these Hecke orbits. As part of this award the PI plans to introduce undergraduates to research in mathematics and to train graduate students on topics related to the project.The specific goals of this project are to understand the characteristic zero and characteristic p interplay of isogenies and Hecke orbits, keeping in mind applications to the long standing question of finding abelian varieties not isogenous to Jacobians. The PI also plans to study just-likely and unlikely intersections in Shimura varieties within the context of Hecke orbits, and to finally make progress towards understanding the dynamics of Hecke operators on mod p Shimura varieties, in the context of the Hecke Orbit conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
椭圆曲线(和它们的推广称为阿贝尔簇)是基本的数学对象,在其他领域也非常重要,如密码学和纠错码。有自然发生的几何空间,称为志村簇,其点分类不同的椭圆曲线(和阿贝尔簇)。在这些空间内是轨道,称为赫克轨道。这些轨道不像行星围绕太阳的规则周期轨道,而是高度不可预测和混乱的。事实上,每一个轨道都是均匀分布在志村品种。首席研究员和他的合作者将使用数学各个领域的技术,包括数论,代数几何和表示论来研究这些Hecke轨道的几个方面。作为该奖项的一部分,PI计划介绍本科生在数学研究和培训研究生的主题相关的项目。该项目的具体目标是了解特征零和特征p的相互作用的同源性和赫克轨道,牢记应用程序的长期存在的问题,寻找阿贝尔品种不同源的雅可比矩阵。PI还计划在Hecke轨道的背景下研究Shimura品种的可能性和不可能的交叉点,并最终在Hecke轨道猜想的背景下,朝着理解mod p Shimura品种的Hecke运营商的动态取得进展。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reductions of abelian surfaces over global function fields
全局函数域上阿贝尔曲面的约简
- DOI:10.1112/s0010437x22007473
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Maulik, Davesh;Shankar, Ananth N.;Tang, Yunqing
- 通讯作者:Tang, Yunqing
Exceptional jumps of Picard ranks of reductions of K3 surfaces over number fields
K3 曲面在数域上的约简皮卡德等级的异常跳跃
- DOI:10.1017/fmp.2022.14
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Shankar, Ananth N.;Shankar, Arul;Tang, Yunqing;Tayou, Salim
- 通讯作者:Tayou, Salim
Picard ranks of K3 surfaces over function fields and the Hecke orbit conjecture.
K3 曲面在函数场和 Hecke 轨道猜想上的皮卡德排序。
- DOI:10.1007/s00222-022-01097-x
- 发表时间:2022
- 期刊:
- 影响因子:3.1
- 作者:Maulik, David;Shankar, Ananth N.;Tang, Yunqing
- 通讯作者:Tang, Yunqing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ananth Shankar其他文献
Paediatric and adolescent sellar and suprasellar lesions
- DOI:
10.1016/j.crad.2022.08.056 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Meghavi Mashar;Natasha Thorley;Harpreet Hyare;Ananth Shankar - 通讯作者:
Ananth Shankar
Treatment-related MRI changes following proton beam therapy in a teenage and young adult neuro-oncology cohort
- DOI:
10.1016/j.rcro.2023.100128 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Teodros Truneh;Harpreet Hyare;Trung Nguyen;Carmen Soto;Ananth Shankar;Naomi Fersht - 通讯作者:
Naomi Fersht
Ananth Shankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ananth Shankar', 18)}}的其他基金
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
- 批准号:
2338942 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
- 批准号:
2337467 - 财政年份:2023
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
CAREER: Algebraicity and Integral Models of Shimura Varieties
职业:志村品种的代数性和积分模型
- 批准号:
2338942 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
Diagonal Grobner Geometry of Generalized Determinantal Varieties
广义行列式簇的对角格罗布纳几何
- 批准号:
2344764 - 财政年份:2023
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
Prosodic Event Annotation and Detection in Three Varieties of English
三种英语韵律事件标注与检测
- 批准号:
2316030 - 财政年份:2023
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
Producing more with less adapting high yielding barley varieties to low input agriculture
让高产大麦品种适应低投入农业,少花钱多产
- 批准号:
BB/Y513672/1 - 财政年份:2023
- 资助金额:
$ 29.75万 - 项目类别:
Training Grant