High-Temperature Ultra-Wide Bandgap Gallium Oxide Power Module
高温超宽禁带氧化镓功率模块
基本信息
- 批准号:2100504
- 负责人:
- 金额:$ 36.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to address the knowledge gaps and challenges that are presently limiting the advancement of high-temperature, high-density power electronics. High-temperature power electronics can increase the power density of transportation systems by reducing the size and weight of the cooling system, and enabling the power converter to be placed in strategic locations with high ambient temperatures, such as in close proximity to the engine or motor. However, higher temperatures degrade the performance and reliability of present power electronics components. This project aims to overcome these challenges and develop a high-temperature gallium oxide power module. Gallium oxide is an ultra-wide-bandgap semiconductor that is emerging as a viable candidate for high-temperature power electronics due to its advantageous material properties. The intellectual merits of the project include understanding of semiconductor device and package electro-thermal interactions, solutions for high-temperature package encapsulants and semiconductor device gate dielectrics, and strategies for thermal management. The broader impacts of the project include insight into the possibilities and challenges for gallium-oxide-based power electronics, and advancements in high-temperature packaging, which could allow for more-efficient and higher-density electric transportation and harsh-environment systems. Other broader impacts of the project include undergraduate and graduate education on power electronics packaging and ultra-wide-bandgap semiconductors, and diversity and inclusion activities, such as hands-on workshops, laboratory tours, and demonstrations for women and underrepresented minorities.Extreme temperatures challenge the limits of silicon power semiconductors, and diminish the performance benefits of wide-bandgap devices. While gallium oxide is a promising alternative due to its superior thermal stability, it has low thermal conductivity, which creates additional challenges for the package and thermal management system. Another major challenge is the reliability of the power electronics package under high temperature conditions. In particular, a key limitation for high-temperature power modules is the encapsulation. The encapsulation provides essential electrical insulation, as well as corrosion resistance and protection. Traditional polymeric encapsulants degrade rapidly at elevated temperatures. This work aims to overcome these challenges through four main research goals: 1) to develop an electro-thermal, device-package co-design framework that will enable physical insights into the device-package interdependencies, and accelerate the design of power modules optimized for emerging power semiconductor devices; 2) to evaluate and apply new dielectric materials for use as the high-temperature power module encapsulant, and as the gate dielectric and passivation for the gallium oxide power device; 3) to explore innovative heat dissipation strategies at the device and package levels for improved thermal performance of gallium-oxide-based power modules; and 4) to demonstrate a high-temperature gallium oxide power module, and assess its electrical, thermal, and reliability characteristics. The knowledge gained from this work will illuminate the potential of gallium oxide power devices, and enable significant improvements in high-temperature packaging, which could facilitate major advancements in electric transportation and harsh environment applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF项目旨在解决目前限制高温,高密度电力电子技术进步的知识差距和挑战。高温电力电子设备可以通过减小冷却系统的尺寸和重量来提高运输系统的功率密度,并使功率转换器能够放置在具有高环境温度的战略位置,例如靠近发动机或电机。然而,更高的温度降低了当前电力电子部件的性能和可靠性。本项目旨在克服这些挑战,开发一种高温氧化镓功率模块。氧化镓是一种超宽带隙半导体,由于其优越的材料特性,正成为高温电力电子的可行候选者。该项目的智力优势包括对半导体器件和封装电热相互作用的理解,高温封装密封剂和半导体器件栅极密封剂的解决方案,以及热管理策略。该项目的更广泛影响包括深入了解基于氧化镓的电力电子的可能性和挑战,以及高温封装的进步,这可以实现更高效,更高密度的电力运输和恶劣环境系统。该项目的其他更广泛的影响包括电力电子封装和超宽带隙半导体的本科生和研究生教育,以及多样性和包容性活动,如实践研讨会,实验室图尔斯参观,以及针对女性和代表性不足的少数民族的演示。极端温度挑战硅功率半导体的极限,并降低宽带隙器件的性能优势。虽然氧化镓因其上级热稳定性而成为一种有前景的替代品,但它的导热率较低,这给封装和热管理系统带来了额外的挑战。另一个主要挑战是高温条件下电力电子封装的可靠性。特别是,高温功率模块的一个关键限制是封装。封装提供了必要的电气绝缘,以及耐腐蚀性和保护。传统的聚合物澄清剂在高温下迅速降解。本研究旨在通过以下四个主要研究目标来克服这些挑战:1)开发一种电热、器件-封装协同设计框架,使人们能够深入了解器件-封装的物理依赖性,并加速针对新兴功率半导体器件优化的功率模块设计; 2)评估和应用新的电介质材料,以用作高温功率模块密封剂,以及用作氧化镓功率器件的栅极电介质和钝化; 3)探索器件和封装层面的创新散热策略,以提高氧化镓基功率模块的热性能; 4)演示高温氧化镓功率模块,并评估其电气、热学和可靠性特性。从这项工作中获得的知识将阐明氧化镓功率器件的潜力,并使高温封装得到显著改进,这可能促进电气运输和恶劣环境应用的重大进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation and Evaluation of High-Temperature Encapsulation Materials for Power Module Applications
功率模块应用高温封装材料的研究和评估
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lyon, Benjamin;DiMarino, Christina
- 通讯作者:DiMarino, Christina
Electro-Thermal Device-Package Co-Design for Ultra-Wide Bandgap Gallium Oxide Power Devices
超宽带隙氧化镓功率器件的电热器件封装协同设计
- DOI:10.1109/ecce50734.2022.9948059
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Albano, Benjamin;Wang, Boyan;Zhang, Yuhao;DiMarino, Christina
- 通讯作者:DiMarino, Christina
(Invited) How to Achieve Low Thermal Resistance and High Electrothermal Ruggedness in Ga 2 O 3 Devices?
(特邀)如何在Ga 2 O 3 器件中实现低热阻和高电热耐用性?
- DOI:10.1149/10405.0021ecst
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Yuhao;Wang, Boyan;Xiao, Ming;Spencer, Joseph;Zhang, Ruizhe;Knoll, Jack;DiMarino, Christina;Lu, Guo-Quan;Sasaki, Kohei;Buttay, Cyril
- 通讯作者:Buttay, Cyril
Recent progress of Ga 2 O 3 power technology: large-area devices, packaging and applications
Ga 2 O 3 功率技术最新进展:大面积器件、封装及应用
- DOI:10.35848/1347-4065/acb3d3
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Qin, Yuan;Wang, Zhengpeng;Sasaki, Kohei;Ye, Jiandong;Zhang, Yuhao
- 通讯作者:Zhang, Yuhao
Low Thermal Resistance (0.5 K/W) Ga₂O₃ Schottky Rectifiers With Double-Side Packaging
采用双面封装的低热阻 (0.5 K/W) Ga-O-肖特基整流器
- DOI:10.1109/led.2021.3089035
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Wang, Boyan;Xiao, Ming;Knoll, Jack;Buttay, Cyril;Sasaki, Kohei;Lu, Guo-Quan;Dimarino, Christina;Zhang, Yuhao
- 通讯作者:Zhang, Yuhao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina DiMarino其他文献
Christina DiMarino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
- 批准号:
24K17312 - 财政年份:2024
- 资助金额:
$ 36.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
REMARKABLE: Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated LEarning
引人注目:通过超广域网和分布式联合学习进行农村环境监测
- 批准号:
EP/X039048/1 - 财政年份:2023
- 资助金额:
$ 36.87万 - 项目类别:
Research Grant
Ultra-sensitive, unbiased, high-throughput, biochemical CHANGE-seq genome-wide activity and gRNA sequencing assays for therapeutic genome editing INDs
用于治疗性基因组编辑 IND 的超灵敏、无偏倚、高通量、生化 CHANGE-seq 全基因组活性和 gRNA 测序分析
- 批准号:
10668824 - 财政年份:2023
- 资助金额:
$ 36.87万 - 项目类别:
Rural Environmental Monitoring via ultra wide-ARea networKs And distriButed federated Learning
通过超广域网和分布式联合学习进行农村环境监测
- 批准号:
EP/X039021/1 - 财政年份:2023
- 资助金额:
$ 36.87万 - 项目类别:
Research Grant
Energy harvesting system using ultra-low voltage electronics for low power wide area distributed energy resources
使用超低压电子设备的能量收集系统,用于低功率广域分布式能源
- 批准号:
22H01465 - 财政年份:2022
- 资助金额:
$ 36.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Genome-wide mutational integration for ultra-sensitive plasma tumor burden monitoring in immunotherapy
全基因组突变整合用于免疫治疗中超灵敏血浆肿瘤负荷监测
- 批准号:
10344658 - 财政年份:2022
- 资助金额:
$ 36.87万 - 项目类别:
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 36.87万 - 项目类别:
Continuing Grant
ASCENT: Optically-Driven Ultra-Wide-Bandgap Power Electronics for Grid Energy Conversion
ASCENT:用于电网能量转换的光驱动超宽带隙电力电子器件
- 批准号:
2230412 - 财政年份:2022
- 资助金额:
$ 36.87万 - 项目类别:
Standard Grant
Development of a Remote Health and Activity Monitoring Assessment Tool with Ultra-Wide-Band Tracking
开发具有超宽带跟踪功能的远程健康和活动监测评估工具
- 批准号:
573021-2022 - 财政年份:2022
- 资助金额:
$ 36.87万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




