Algebraic Quantum Symmetry

代数量子对称性

基本信息

  • 批准号:
    2100756
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Symmetry is one of the oldest notions in mathematics. Many algebraic structures have been introduced to axiomatize this notion, starting with groups in the mid-19th century. Arguably, in each area, the mathematical tools that capture symmetry have an underlying structure that is algebraic; structures that are known as a bialgebra, a Hopf algebra, or a Hopf-type algebra. Nowadays, connections between these settings are examined through the lens of category theory that allows for the use of special structures known as monoidal categories, which have numerous applications including quantum information, quantum field theory and string theory. The main goal of the project is to study symmetries of algebra objects within monoidal categories, especially co/representation categories of Hopf-type algebras. This project will fund undergraduate research and the PI will continue their advocacy work for members of underrepresented groups in the mathematical sciences. Given an object X, a symmetry of X is a property-preserving transformation from X to itself, and the collection of invertible symmetries of X forms a group: the automorphism group of X. Since then, generalizations of groups have been introduced to capture the symmetries of not only objects, but also of function algebras of objects that cannot be observed (e.g., objects in quantum physics). This move from “classical symmetry” to “quantum symmetry” has its origins in quantum mechanics, and arises in active research areas such as conformal field theory, low-dimensional topology, and operator algebras. In examining the various settings of symmetry of algebras beyond the framework of "classical symmetry", comprised of groups actions on commutative algebras, the PI will continue their work in "quantum symmetry" involving co/actions of bialgebras, or of Hopf algebras, on noncommutative algebras with a trivial base. The PI will also delve further into "weak quantum symmetry" involving co/actions of weak bialgebras, or of weak Hopf algebras, on noncommutative algebras with a non-trivial base. Moreover, the PI will examine algebras via "categorical quantum symmetry”: This pertains to studying algebras in general monoidal categories, not necessarily in co/representation categories of (weak) bi/Hopf algebras, including several types of semisimple monoidal categories, for example, fusion categories, and modular tensor categories, both semisimple and nonsemisimple.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称是数学中最古老的概念之一。从19世纪中期的群开始,许多代数结构被引入来公理化这个概念。可以说,在每个领域,捕捉对称性的数学工具都有一个代数的底层结构;被称为双代数、Hopf代数或Hopf型代数的结构。如今,这些设置之间的联系是通过范畴论的透镜来检查的,范畴论允许使用被称为单一性范畴的特殊结构,它有许多应用,包括量子信息,量子场论和弦理论。本课题的主要目标是研究一元代数范畴内代数对象的对称性,特别是hopf型代数的共/表示范畴。该项目将资助本科生的研究,PI将继续为数学科学中代表性不足的群体成员开展宣传工作。给定一个对象X, X的对称是X到自身的保性质变换,X的可逆对称的集合形成一个群:X的自同构群。此后,群的推广被引入,不仅捕获对象的对称性,而且捕获不能被观察到的对象的函数代数的对称性(例如,量子物理中的对象)。这种从“经典对称”到“量子对称”的转变起源于量子力学,并出现在诸如共形场论、低维拓扑和算子代数等活跃的研究领域。在检验“经典对称”框架之外的代数的各种对称设置,由交换代数上的群作用组成,PI将继续他们在“量子对称”方面的工作,涉及双代数或Hopf代数在具有平凡基的非交换代数上的共/作用。PI还将进一步研究“弱量子对称”,涉及弱双代数或弱霍普夫代数在具有非平凡基的非交换代数上的协同作用。此外,PI将通过“范畴量子对称”来检查代数:这涉及到一般单一性范畴的代数研究,而不一定是(弱)bi/Hopf代数的共/表示范畴,包括几种类型的半单一性范畴,例如融合范畴和模张量范畴,包括半单一性和非半单一性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chelsea Walton其他文献

Nondegenerate module categories
  • DOI:
    10.1007/s00209-025-03723-9
  • 发表时间:
    2025-05-02
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Chelsea Walton;Harshit Yadav
  • 通讯作者:
    Harshit Yadav
Twists of graded algebras in monoidal categories
幺半群范畴中分级代数的扭曲
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fernando Liu Lopez;Chelsea Walton
  • 通讯作者:
    Chelsea Walton

Chelsea Walton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chelsea Walton', 18)}}的其他基金

Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Expanding representation in Noncommutative Algebra and Representation Theory: WINART2 Workshop
扩展非交换代数和表示论中的表示:WINART2 研讨会
  • 批准号:
    1900575
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Algebra Extravaganza
代数盛宴
  • 批准号:
    1712663
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Quantum Symmetry
量子对称性
  • 批准号:
    1663775
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Noncommutative Algebraic Geometry and Noncommutative Invariant Theory
非交换代数几何和非交换不变理论
  • 批准号:
    1550306
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Noncommutative Algebraic Geometry and Noncommutative Invariant Theory
非交换代数几何和非交换不变理论
  • 批准号:
    1401207
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1102548
  • 财政年份:
    2011
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
  • 批准号:
    2345644
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Symmetry and measurement: a foundation for semi-local quantum physics
对称性与测量:半定域量子物理的基础
  • 批准号:
    EP/Y000099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
Using symmetry to enhance quantum batteries and heat engines
利用对称性增强量子电池和热机
  • 批准号:
    23K03290
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
  • 批准号:
    2309157
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
  • 批准号:
    2303334
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Quantum defects in two-dimensional materials by local-symmetry-guided data-driven design
职业:通过局域对称引导的数据驱动设计研究二维材料中的量子缺陷
  • 批准号:
    2314050
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Nonperturbative Study of Quantum Field Theories in view of Generalized Symmetry
广义对称性下量子场论的非微扰研究
  • 批准号:
    22H01218
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
  • 批准号:
    22K03446
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symmetry Protected and Topological Phases in Quantum Many Body Systems
量子多体系统中的对称保护相和拓扑相
  • 批准号:
    RGPIN-2018-05136
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了