Rapid, High-Throughput, and Real-time Assessment of Antibiotic Effectiveness against Pathogenic Biofilms
快速、高通量、实时评估抗生素对致病性生物膜的有效性
基本信息
- 批准号:2100757
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacterial infections from biofilms are a major threat to human health because biofilm bacteria become very resistant to antibiotics and human immune responses. Effective and rapid antibiotic-susceptibility testing (AST) for biofilms is urgently required to guide effective antibiotic use and to survey the spread and emergence of antimicrobial resistance. Conventional AST techniques are not generally suitable for biofilms, thus the overall objective of this project is to provide an innovative, practical, and reliable AST for disease-causing biofilms. This AST will enable rapid, high-throughput, and real-time monitoring along with controllable manipulation of bacterial microenvironments and rapid biofilm formation from a low volume sample. This is accomplished by continuously monitoring bacterial extracellular electron transfers (EEFs) through their metabolic activities, which are impaired by effective antibiotics. Furthermore, a novel strategy will be created to rapidly construct a 3-D polymicrobial biofilm and to establish various biofilm models that mimic natural polymicrobial communities. The project will address grand challenges in microbial infections critical to U.S. healthcare and the economy. Findings will first be disseminated within the discipline through local and international conferences and journal publications; then they will be distributed through educational venues maximizing the project’s reach and impact. This project aims to provide a new strategy for rapid and high-throughput assessment of antibiotic effectiveness against pathogenic biofilms by monitoring the energy output of bacteria in a 3-D multi-laminate structure of papers as a scaffold to support bacterial biofilms. Studies are designed to test a two-fold central hypothesis that: (1) the electrons collectively harvested from a group of cells in a biofilm can be strong enough as a transducing signal to sensitively and continuously monitor both bacterial growth and antibiotic susceptibility, and (2) a 3-D multi-laminate paper stack can provide a new strategy for rapid layer-by-layer biofilm formation in a high-throughput format. The research plan is organized under three aims: (1) create a real-time, sensitive biosensing platform to electrically evaluate antibiotic effectiveness of bacteria in a high-throughput (96 wells) and rapid (5 hours) manner using microbial fuel cell (MFC) based biosensors previously developed by the investigator; (2) develop a multi-layer hydrophilic paper-based culturing platform for rapid biofilm formation with control of biofilm thickness and microbial concentration; and (3) demonstrate integration as a system and practical use with model biofilms of Pseudomonas aeruginosa and Enterococcus faecalis. In summary, the AST array developed will contribute to an in-depth understanding of the underlying dynamics of antibiotic resistance evolution in biofilms and test the effectiveness of an antibiotic regime for treating biofilm-associated infections.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物膜细菌感染是对人类健康的主要威胁,因为生物膜细菌对抗生素和人体免疫反应具有很强的耐药性。迫切需要有效和快速的生物膜药敏试验(AST)来指导有效的抗生素使用,并调查抗菌素耐药性的传播和出现。传统的AST技术一般不适用于生物膜,因此本项目的总体目标是为致病生物膜提供一种创新、实用、可靠的AST。该AST将实现快速、高通量和实时监测,同时可控制细菌微环境的操作,并从小体积样品中快速形成生物膜。这是通过持续监测细菌细胞外电子转移(EEFs)的代谢活动来实现的,这些代谢活动被有效的抗生素破坏。此外,将创建一种新的策略来快速构建三维多微生物生物膜,并建立模拟天然多微生物群落的各种生物膜模型。该项目将解决对美国医疗保健和经济至关重要的微生物感染方面的重大挑战。研究结果将首先通过当地和国际会议和期刊出版物在学科内传播;然后,它们将通过教育场所分发,最大限度地扩大项目的覆盖范围和影响。该项目旨在通过监测细菌在三维多层纸结构中的能量输出,作为支撑细菌生物膜的支架,为快速和高通量评估抗生素对致病性生物膜的有效性提供一种新的策略。研究旨在测试一个双重中心假设:(1)从生物膜中的一组细胞中收集的电子可以作为一个足够强的转导信号,以敏感和连续地监测细菌生长和抗生素敏感性;(2)3-D多层纸堆栈可以为高通量格式的快速层层生物膜形成提供一种新策略。该研究计划有三个目标:(1)创建一个实时、灵敏的生物传感平台,利用研究者先前开发的基于微生物燃料电池(MFC)的生物传感器,以高通量(96孔)和快速(5小时)的方式对细菌的抗生素有效性进行电评估;(2)开发多层亲水性纸基生物膜快速培养平台,控制生物膜厚度和微生物浓度;(3)展示铜绿假单胞菌和粪肠球菌模型生物膜的系统整合和实际应用。总之,AST阵列的开发将有助于深入了解生物膜中抗生素耐药性演变的潜在动力学,并测试抗生素治疗生物膜相关感染的有效性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plug-and-play modular biobatteries with microbial consortia
- DOI:10.1016/j.jpowsour.2022.231487
- 发表时间:2022-04-20
- 期刊:
- 影响因子:9.2
- 作者:Elhadad,Anwar;Liu,Lin;Choi,Seokheun
- 通讯作者:Choi,Seokheun
3-D PRINTED REDOX-ACTIVE ORGANIC ELECTRODES TO BRIDGE ACROSS BIOLOGY AND ELECTRONICS
3D 打印氧化还原活性有机电极连接生物学和电子学
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Elhadad, Anwar;Choi, Seokheun
- 通讯作者:Choi, Seokheun
A Biobattery Capsule for Ingestible Electronics in the Small Intestine: Biopower Production from Intestinal Fluids Activated Germination of Exoelectrogenic Bacterial Endospores
- DOI:10.1002/aenm.202202581
- 发表时间:2022-11
- 期刊:
- 影响因子:27.8
- 作者:Maryam Rezaie;Z. Rafiee;Seokheun Choi
- 通讯作者:Maryam Rezaie;Z. Rafiee;Seokheun Choi
AN EQUIPMENT-FREE PAPERTRONIC SENSING SYSTEM FOR POINT-OF-CARE MONITORING OF ANTIMICROBIAL SUSCEPTIBILITY
用于抗菌药物敏感性即时护理监测的无设备纸电子传感系统
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rafiee, Zahra;Rezaie, Maryam;Noruz Shamsian, Olya;Choi, Seokheun
- 通讯作者:Choi, Seokheun
Biofuel Cells and Biobatteries: Misconceptions, Opportunities, and Challenges
- DOI:10.3390/batteries9020119
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Seokheun Choi
- 通讯作者:Seokheun Choi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seokheun Choi其他文献
A Microsized Microbial Solar Cell: A demonstration of photosynthetic bacterial electrogenic capabilities.
微型微生物太阳能电池:光合细菌产电能力的演示。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.6
- 作者:
Sanghyeon Yoon;Hankeun Lee;A. Fraiwan;C. Dai;Seokheun Choi - 通讯作者:
Seokheun Choi
A Cyanobacterial Artificial Leaf for Simultaneous Carbon Dioxide Reduction and Bioelectricity Generation
一种同时减少二氧化碳和产生生物电的蓝藻人造叶
- DOI:
10.1109/mems46641.2020.9056240 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lin Liu;Seokheun Choi - 通讯作者:
Seokheun Choi
Revolutionary self-powered transducing mechanism for long-lasting and stable glucose monitoring: achieving selective and sensitive bacterial endospore germination in microengineered paper-based platforms
用于持久稳定葡萄糖监测的革命性自供电传感机制:在微工程纸基平台上实现选择性和灵敏的细菌芽孢萌发
- DOI:
10.1038/s41378-024-00836-9 - 发表时间:
2024-12-12 - 期刊:
- 影响因子:9.900
- 作者:
Yang Gao;Anwar Elhadad;Seokheun Choi - 通讯作者:
Seokheun Choi
Advancing Microfluidic-Based Protein Biosensor Technology: for Use in Clinical Diagnostics
- DOI:
- 发表时间:
2011-11 - 期刊:
- 影响因子:0
- 作者:
Seokheun Choi - 通讯作者:
Seokheun Choi
A micro-sized microbial solar cell
微型微生物太阳能电池
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sanghyeon Yoon;Hankeun Lee;A. Fraiwan;C. Dai;Seokheun Choi - 通讯作者:
Seokheun Choi
Seokheun Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seokheun Choi', 18)}}的其他基金
Stepping Toward Disposable Electronics: Integrated Papertronic Techniques
迈向一次性电子产品:集成纸电子技术
- 批准号:
2246975 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Power-on-Skin: Energy Generation from Sweat-Eating Bacteria for Self-Powered Electronic Skins
皮肤供电:通过食汗细菌产生能量,用于自供电电子皮肤
- 批准号:
1920979 - 财政年份:2019
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Unlocking the Promise of Bacterial Electrogenicity
释放细菌电性的希望
- 批准号:
1703394 - 财政年份:2017
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
An Origami Paper-Based Bacteria-Powered Battery for On-Chip Biosensors
用于片上生物传感器的折纸纸基细菌供电电池
- 批准号:
1503462 - 财政年份:2015
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Open-Access, Real-Time High-Throughput Metabolomics for High-Field and Benchtop NMR for Biological Inquiry
职业:用于生物研究的高场和台式 NMR 的开放获取、实时高通量代谢组学
- 批准号:
2237314 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Real-time and high-throughput observation of nanomedicine behaviors of inside cancer cell spheroids with an integrated model of light sheet fluorescence microscopy and a microfluidic platform
利用光片荧光显微镜和微流控平台的集成模型实时高通量观察癌细胞球体内部的纳米医学行为
- 批准号:
23K19100 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Developing a pathogen-repellant wrap-improving performance and manufacturing throughput and evaluating real-world potential
开发一种病原体防护包装——提高性能和制造产量并评估现实世界的潜力
- 批准号:
570921-2021 - 财政年份:2022
- 资助金额:
$ 37万 - 项目类别:
Alliance Grants
Combining high throughput metabolomics with real-time biosensors to study the oxidative state in cell culture producing recombinant proteins.
将高通量代谢组学与实时生物传感器相结合,研究生产重组蛋白的细胞培养物中的氧化状态。
- 批准号:
RGPIN-2019-04694 - 财政年份:2022
- 资助金额:
$ 37万 - 项目类别:
Discovery Grants Program - Individual
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2141008 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: High-throughput, Autonomous Real-time Monitoring of Tissue Mechanical Property Change via Impedimetric Sensor Arrays
EAGER/协作研究:通过阻抗传感器阵列高通量、自主实时监测组织机械性能变化
- 批准号:
2140549 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Live 3D Confocal Imaging in real time with high throughput, multipoint, targeted acquisition and AI-assisted quantification
实时实时 3D 共焦成像,具有高通量、多点、定向采集和人工智能辅助量化功能
- 批准号:
BB/V019414/1 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Research Grant
Combining high throughput metabolomics with real-time biosensors to study the oxidative state in cell culture producing recombinant proteins.
将高通量代谢组学与实时生物传感器相结合,研究生产重组蛋白的细胞培养物中的氧化状态。
- 批准号:
RGPIN-2019-04694 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Discovery Grants Program - Individual
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
- 批准号:
10450925 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别:
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
- 批准号:
10677748 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别: