Live 3D Confocal Imaging in real time with high throughput, multipoint, targeted acquisition and AI-assisted quantification
实时实时 3D 共焦成像,具有高通量、多点、定向采集和人工智能辅助量化功能
基本信息
- 批准号:BB/V019414/1
- 负责人:
- 金额:$ 98.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imaging is a powerful tool used to understand and exploit the fundamental processes within cells and tissues. Since the microscope was discovered in the late 1500s, there have been many technical advances in the magnification and sensitivity it can achieve. It is now possible to track single molecules in real time within cells as small as bacteria using super resolution microscopy. It is also possible to take a series of vertical images (optical slices) to build up a precise 3D reconstruction of tissue samples and microbes. If this is performed using confocal microscopy there is minimal background light from adjacent slices making the resolution and sensitivity of the final images precise. These advances are facilitating the elucidation of interactions between molecules (e.g. an antimicrobial with its target), interactions between host cells and invading microbes, processes within tumours and also the engineering of bacteria/fungi to generate products of use to us (e.g. biofuels). Currently there is a bottleneck in the screening of (i) cells to identify which we can exploit, or (ii) novel compounds that we could develop into effective drugs. The delay is caused because the highest resolution microscopes only view one sample at a time. Developers are now building high resolution microscopes that process multiple samples automatically, enabling high throughput screening. We are requesting support to purchase one of the newest generation of microscopes: a high throughput, high content imaging system (HCS). Recently step change improvements in HCS have brought to the market HCS with confocal and super resolution capabilities that are guided by machine learning. The power of artificial intelligence (AI)-driven image acquisition is that the HCS can scan multiple samples at low resolution and be trained to focus in on interesting areas for high resolution imaging. In this way, the speed of the screening is increased and the automation reduces error.Two additional features of this new generation of microscopes are particularly relevant for the research we propose to undertake. Firstly, the confocal HCS has a sterilizable sample holder. We will exploit this by installing the HCS in a laboratory with the safety containment required for the study of infectious microbes. Secondly, the equipment includes a cabinet in which we can control the environment. This will enable us to provide the best conditions for maintaining the system under study e.g. low or high oxygen/humidity/optimal temperature (e.g. different microbes and 3D tissue models) and allow us to follow cellular process by undertaking time-lapse imaging at high resolution. Equipment with the high specification requested will be the first such facility in the Midlands. Our application has the support of the Midlands Innovation network of Universities as well as considerable support from industry partners. Notably, the National Biofilm Innovation Centre is supporting our application because the 31 universities and >60 companies that it partners with would be able to exploit the HCS in their biofilm research. We predict that a confocal HCS will make a real difference to the pipeline of new medicines (antibiotic, anti-viral, anti-biofilm, fungicides, anti-tumour) and exploitable products generated using microbes. These advances will improve the health and wealth of the nation. The HCS will be managed by an experienced imaging team (SLIM) with a track record in maintaining and supporting the use of a portfolio of microscopes by internal and external scientists. SLIM will expand its thorough training programme to ensure users are fully skilled in HCS handling, and thereby support their career development and maximise the potential of the output from the HCS. The availability of the HCS will be publicised through equipment catalogues and web pages to the research community and industry. The images created will be integrated into ongoing outreach activities.
成像是一种强大的工具,用于了解和利用细胞和组织内的基本过程。自16世纪末发现显微镜以来,在放大率和灵敏度方面取得了许多技术进步。现在可以使用超分辨率显微镜在真实的时间内跟踪小到细菌的细胞内的单个分子。还可以拍摄一系列垂直图像(光学切片),以建立组织样本和微生物的精确3D重建。如果使用共聚焦显微镜进行,则来自相邻切片的背景光最少,使得最终图像的分辨率和灵敏度精确。这些进展有助于阐明分子之间的相互作用(例如抗菌剂与其靶标),宿主细胞与入侵微生物之间的相互作用,肿瘤内的过程以及细菌/真菌的工程化以产生对我们有用的产品(例如生物燃料)。目前,在筛选(i)细胞以确定我们可以利用的细胞,或(ii)我们可以开发成有效药物的新型化合物方面存在瓶颈。延迟是因为最高分辨率的显微镜一次只能观察一个样品。开发人员现在正在建造高分辨率显微镜,可以自动处理多个样品,从而实现高通量筛选。我们正在寻求支持,以购买最新一代的显微镜:高通量,高内容成像系统(HCS)。最近,HCS中的阶跃变化改进已经将具有由机器学习指导的共焦和超分辨率功能的HCS推向市场。人工智能(AI)驱动的图像采集的强大功能在于,HCS可以以低分辨率扫描多个样本,并经过训练,专注于感兴趣的区域,以实现高分辨率成像。通过这种方式,可以提高筛选速度,并通过自动化减少误差。新一代显微镜的两个额外功能与我们计划进行的研究特别相关。首先,共焦HCS具有可灭菌的样品保持器。我们将利用这一点,将HCS安装在一个实验室中,该实验室具有研究传染性微生物所需的安全容器。其次,设备包括一个机柜,我们可以在其中控制环境。这将使我们能够提供维持研究中系统的最佳条件,例如低或高氧气/湿度/最佳温度(例如不同的微生物和3D组织模型),并允许我们通过进行高分辨率的延时成像来跟踪细胞过程。具有高规格要求的设备将是中部地区第一个这样的设施。我们的应用程序得到了Midlands Innovation Network of Universities的支持,以及行业合作伙伴的大力支持。值得注意的是,国家生物膜创新中心正在支持我们的申请,因为与它合作的31所大学和超过60家公司将能够在他们的生物膜研究中利用HCS。我们预测,共聚焦HCS将对新药(抗生素、抗病毒、抗生物膜、杀真菌剂、抗肿瘤)和利用微生物产生的可开发产品的管道产生真实的影响。这些进步将改善国家的健康和财富。HCS将由一个经验丰富的成像团队(SLIM)管理,该团队在维护和支持内部和外部科学家使用显微镜组合方面具有良好的记录。SLIM将扩大其全面的培训计划,以确保用户完全熟练地处理HCS,从而支持他们的职业发展,并最大限度地发挥HCS的潜力。我们会透过仪器目录和网页,向研究界和业界宣传HCS的供应情况。所制作的图像将纳入正在进行的外联活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kim Hardie其他文献
Kim Hardie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
- 批准号:JCZRLH202500778
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
- 批准号:2025JJ60269
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
- 批准号:2025JJ80409
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
- 批准号:2025JJ70487
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级结构仿生3D打印生物陶瓷调控
PI3K/Akt信号通路介导细胞应激反应促
进血管化骨再生的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Confocal spectroscopy for cell 3D microthermometry
用于细胞 3D 显微测温的共焦光谱
- 批准号:
BB/X003841/1 - 财政年份:2023
- 资助金额:
$ 98.58万 - 项目类别:
Research Grant
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 98.58万 - 项目类别:
Live-cell, deep-tissue, low-light, 3D-STED confocal microscopy: a super-resolution imaging platform specifically designed for plant science.
活细胞、深层组织、低光、3D-STED 共焦显微镜:专为植物科学设计的超分辨率成像平台。
- 批准号:
BB/W019752/1 - 财政年份:2022
- 资助金额:
$ 98.58万 - 项目类别:
Research Grant
3D STED Super-resolution Confocal Microscope
3D STED 超分辨率共焦显微镜
- 批准号:
464973041 - 财政年份:2021
- 资助金额:
$ 98.58万 - 项目类别:
Major Research Instrumentation
Mapping of abnormal neural circuit formation by diffusion tensor MRI and 3D construction of confocal microscope images
通过扩散张量 MRI 绘制异常神经回路形成图和共焦显微镜图像的 3D 构建
- 批准号:
20K08089 - 财政年份:2020
- 资助金额:
$ 98.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Airyscan-based Confocal Phase Tomography for high-resolution 3D imaging of cell growth- Administrative supplement
基于 Airyscan 的共焦相位断层扫描,用于细胞生长的高分辨率 3D 成像 - 行政补充
- 批准号:
9895090 - 财政年份:2019
- 资助金额:
$ 98.58万 - 项目类别:
Breakthrough sub-cellular 3D chemical composition research platform for live cells, based on the new invention of nanoscale - confocal photothermal IR micro-spectroscopy (n-CPIR)
基于纳米级新发明——共焦光热红外显微光谱(n-CPIR)的突破性活细胞亚细胞3D化学成分研究平台
- 批准号:
9466345 - 财政年份:2017
- 资助金额:
$ 98.58万 - 项目类别:
Brillouin confocal microscopy for biomechanical studies of metastatic cascade in 3D microenvironments
用于 3D 微环境中转移级联生物力学研究的布里渊共焦显微镜
- 批准号:
9301503 - 财政年份:2016
- 资助金额:
$ 98.58万 - 项目类别:
IDBR TYPE A: Development of a Line Confocal Bessel Beam Platform for High-speed High-Volume 3D Imaging In Vivo
IDBR TYPE A:开发用于高速大容量 3D 体内成像的线共焦贝塞尔光束平台
- 批准号:
1354015 - 财政年份:2014
- 资助金额:
$ 98.58万 - 项目类别:
Continuing Grant
Integrated wide-field imaging and confocal microscopy with agile 3D beam scanning
集成宽视场成像和共焦显微镜以及灵活的 3D 光束扫描
- 批准号:
8683686 - 财政年份:2014
- 资助金额:
$ 98.58万 - 项目类别: