SEE DATA: Spaces of Empowerment for Equity and Diversity: Advancement Through Access

查看数据:公平和多元化的赋权空间:通过访问取得进步

基本信息

  • 批准号:
    2101255
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The Spaces of Empowerment for Equity and Diversity: Advancement Through Access (SEE-DATA) project at Portland State University (PSU) aims to identify, understand, and improve the workplace experiences and retention of faculty in STEM fields who have been traditionally minoritized and marginalized based on gender, race/ethnicity, and other intersectional identities (e.g., sexual orientation, disability, socioeconomic status, national origin, immigrant status). The project will collect, analyze, and map data about faculty’s experiences at PSU to inform programs and policies that seek to foster the retention and flourishing of a faculty that more closely resembles the diverse student body at PSU. It is anticipated that the SEE-DATA project will significantly contribute to improving institutional equity.SEE-DATA will take an intersectional approach to data collection, management, analysis, visualization, and dissemination by combining qualitative, quantitative, and socio-spatial data, techniques, and mapping tools with the goal of conveying more nuanced understandings of the equity landscape and “ecosystem” for diverse faculty members than has been established to date elsewhere. The scope of the methodology that the project will develop will be applicable to STEM departments across the university and to other institutions. The project’s strengths-based self-assessment methodologies will contribute to a toolkit for capturing and visualizing the dynamic interplay between the multiple lived identities of STEM faculty as they are manifested in the institutional landscape, thus supporting ADVANCE goals for expanding intersectional equity strategies and interventions. This project addresses limits in extant sources of data (e.g., numerical counts, climate surveys) on the intersectional factors affecting academic STEM recruitment, workplace experiences, retention, and promotion. Outcomes will be expected to advance a clearer and deeper understanding of individual empowerment pathways and institutional systemic change levers in advancing faculty equity in STEM. Knowledge generated will be disseminated via avenues such as a project webpage, public seminars, and conferences geared to professional and general audiences, as well as through networks within PSU, at other colleges/universities, with professional organizations nationally, and via the ADVANCE Resource Coordination Network (ARC) and StratEGIC website. The NSF ADVANCE program is designed to foster gender equity through a focus on the identification and elimination of organizational barriers that impede the full participation and advancement of diverse faculty in academic institutions. Organizational barriers that inhibit equity may exist in policies, processes, practices, and the organizational culture and climate. ADVANCE "Catalyst" awards provide support for institutional equity assessments and the development of five-year faculty equity strategic plans at an academic, non-profit institution of higher education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
波特兰州立大学(PSU)的赋权公平和多样性空间:通过访问(SEE-DATA)项目旨在识别,理解和改善STEM领域教师的工作场所体验和保留,这些教师传统上基于性别,种族/民族和其他交叉身份(例如,性取向、残疾、社会经济地位、国籍、移民身份)。该项目将收集,分析和映射有关教师在PSU的经验的数据,以告知那些寻求促进教师的保留和繁荣的计划和政策,更接近于PSU的多元化学生团体。预计SEE-DATA项目将大大有助于改善机构公平性,SEE-DATA将采取跨部门的方法来收集、管理、分析、可视化和传播数据,将定性、定量和社会空间数据、技术、和绘图工具,目的是传达对公平格局和“生态系统”的更细致入微的理解为不同的教师比已经建立了其他地方的日期。该项目将开发的方法的范围将适用于整个大学和其他机构的STEM部门。该项目的优势为基础的自我评估方法将有助于捕捉和可视化STEM教师的多种生活身份之间的动态相互作用的工具包,因为它们表现在机构景观,从而支持扩展交叉公平战略和干预的ADVANCE目标。该项目解决了现有数据来源的局限性(例如,数字计数,气候调查)对影响学术STEM招聘,工作经验,保留和晋升的交叉因素。预计结果将推动个人赋权途径和机构系统性变革杠杆在推进教师在STEM公平更清晰,更深入的理解。产生的知识将通过诸如项目网页,公共研讨会和面向专业和普通受众的会议,以及通过PSU内的网络,在其他学院/大学,与全国专业组织,并通过ADVANCE资源协调网络(ARC)和StratEGIC网站传播。NSF ADVANCE计划旨在通过重点确定和消除阻碍学术机构中不同教师充分参与和进步的组织障碍来促进性别平等。阻碍公平的组织障碍可能存在于政策、流程、做法以及组织文化和氛围中。ADVANCE“催化剂”奖项为学术性、非营利高等教育机构的机构公平评估和五年期教师公平战略计划的制定提供支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eva Thanheiser其他文献

Developing Understanding of Ratio and Measure as a Foundation for Slope
加深对比率和测量的理解,作为坡度的基础
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eva Thanheiser;Joanne Lobato
  • 通讯作者:
    Joanne Lobato
How Do I Know I Learned Something? Reflecting on Learning by Using Video-Recorded Interviews to Battle Hindsight (“I-Knew-It-All-Along”) Bias
我怎么知道我学到了一些东西?通过使用视频记录的采访来对抗事后偏见(“我一直都知道”)反思学习
  • DOI:
    10.1007/978-3-030-68956-8_8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eva Thanheiser
  • 通讯作者:
    Eva Thanheiser
Justification as a teaching and learning practice: Its (potential) multifacted role in middle grades mathematics classrooms
作为一种教学实践的论证:其在中年级数学课堂中的(潜在)多方面作用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Megan E. Staples;Joanna Bartlo;Eva Thanheiser
  • 通讯作者:
    Eva Thanheiser
Number Talks in Asynchronous Online Classrooms for More Equitable Participation and as Formative Assessment of Student Thinking
在异步在线课堂上进行数字讲座,以实现更公平的参与和对学生思维的形成性评估
  • DOI:
    10.1007/978-3-030-80230-1_8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    S. Han;Eva Thanheiser
  • 通讯作者:
    Eva Thanheiser
Reflective analysis as a tool for task redesign: The case of prospective elementary teachers solving and posing fraction comparison problems
  • DOI:
    10.1007/s10857-015-9334-7
  • 发表时间:
    2015-11-21
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Eva Thanheiser;Dana Olanoff;Amy Hillen;Ziv Feldman;Jennifer M. Tobias;Rachael M. Welder
  • 通讯作者:
    Rachael M. Welder

Eva Thanheiser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eva Thanheiser', 18)}}的其他基金

Collaborative Research: Connecting Elementary Mathematics Teaching to Real-World Issues
合作研究:将基础数学教学与现实世界问题联系起来
  • 批准号:
    2101463
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Developing and Researching K-12 Teacher Leaders Enacting Anti-bias Mathematics Education
合作研究:培养和研究 K-12 教师领导者实施反偏见数学教育
  • 批准号:
    2101665
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
  • 批准号:
    2311035
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Secure and Private Zero Knowledge Data Collaboration Spaces
安全且私密的零知识数据协作空间
  • 批准号:
    10063266
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Water Data Management Ecosystem for Water Data Spaces
水数据空间的水数据管理生态系统
  • 批准号:
    10057186
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Knowledge Discovery in 3D Geospatial Spaces: Towards an Integrated BIM, 3D GIS and IoT Data Framework
3D 地理空间空间中的知识发现:迈向集成 BIM、3D GIS 和 IoT 数据框架
  • 批准号:
    RGPIN-2017-05659
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Knowledge Discovery in 3D Geospatial Spaces: Towards an Integrated BIM, 3D GIS and IoT Data Framework
3D 地理空间空间中的知识发现:迈向集成 BIM、3D GIS 和 IoT 数据框架
  • 批准号:
    RGPIN-2017-05659
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of Hovermap Rapid Data Capture and 3D Imaging of GPS-Denied Spaces
MRI:获取 Hovermap 快速数据捕获和 GPS 遮挡空间的 3D 成像
  • 批准号:
    2117877
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Knowledge Discovery in 3D Geospatial Spaces: Towards an Integrated BIM, 3D GIS and IoT Data Framework
3D 地理空间空间中的知识发现:迈向集成 BIM、3D GIS 和 IoT 数据框架
  • 批准号:
    RGPIN-2017-05659
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    1943758
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了