Leveraging Dynamically Linked Representations in a Semi-Structured Workspace to Cultivate Mathematical Modeling Competencies Among Secondary Students (M2Studio)

利用半结构化工作空间中的动态链接表示来培养中学生的数学建模能力(M2Studio)

基本信息

  • 批准号:
    2101382
  • 负责人:
  • 金额:
    $ 298.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Mathematical modeling can support people in making sense of complex and critical unanswered questions related to real-world phenomena. For example, mathematical modeling can help determine the speed at which an infectious disease will spread, how interventions can limit the spread, and how sea level change can impact coastal populations and ecosystems. While educators and policymakers recognize the importance of mathematical modeling in K-12 education, the complexities of modeling and modeling tasks often create barriers for classroom implementation. Such tasks are complex, open-ended, and require iterative thinking and the coordination of multiple mathematical representations. This three-year Design and Development project seeks to build a semi-structured workplace to support students' mathematical modeling competencies called M2Studio. This technology integrates aspects of two existing and widely used technologies (CODAP and SageModeler) into a single workspace that can effectively capture students' activities, representations, problem solving sequences, and thinking as they work individually or in pairs on mathematical modeling tasks. The project will develop aspects of M2Studio across five design cycles, study student engagement and learning via the platform, and collect data from teachers on the conditions under which M2Studio implementation is particularly effective. The project builds on a theoretical conceptualization of mathematical modeling that involves five sub competencies: simplifying, mathematizing, working mathematically, interpreting, and validating. In building the M2Studio and dynamically linking the CODAP and SageModeler, the system will provide opportunities to be able to assess the ways in which students are engaging in these sub competencies. The project will engage in five design cycles to design the technology and associated curricular modules, deploy and test the technologies with students and teachers, and assess the impact on students' mathematical modeling competencies. The first two design cycles will focus on technology development and short in-person lab tests with 4 teachers and 16 students. Design Cycles 3 and 4 will involve two field tests with 8 teachers and 400 students. The fifth design cycle will involve an implementation study to further explore the research questions. Student learning will be assessed via a mathematical modeling sub-competencies test. Student interaction patterns will be evaluated through the qualitative analysis of screencast and classroom videos. The conditions under which the program is more or less effective with respect to classroom implementation will be measured by observations, interviews, and logs from implementing teachers. The final version of the platform will be hosted and made available widely in various K-16 mathematical modeling communities.The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学建模可以帮助人们理解与现实世界现象相关的复杂和关键的未回答问题。 例如,数学建模可以帮助确定传染病传播的速度,干预措施如何限制传播,以及海平面变化如何影响沿海人口和生态系统。虽然教育工作者和政策制定者认识到数学建模在K-12教育中的重要性,但建模和建模任务的复杂性往往会为课堂实施带来障碍。这些任务是复杂的,开放式的,需要迭代思维和多种数学表示的协调。这个为期三年的设计和开发项目旨在建立一个半结构化的工作场所,以支持学生的数学建模能力,称为M2 Studio。该技术将两种现有且广泛使用的技术(CODAP和SageModeler)的各个方面集成到一个工作空间中,该工作空间可以有效地捕获学生的活动,表示,解决问题的序列以及他们单独或成对地进行数学建模任务时的思维。该项目将在五个设计周期中开发M2 Studio的各个方面,研究学生通过该平台的参与和学习,并收集教师关于M2 Studio实施特别有效的条件的数据。该项目建立在数学建模的理论概念化基础上,涉及五个子能力:简化,数学化,数学工作,解释和验证。在构建M2 Studio并动态链接CODAP和SageModeler时,该系统将提供机会,能够评估学生参与这些子能力的方式。该项目将参与五个设计周期,设计技术和相关的课程模块,与学生和教师一起部署和测试技术,并评估对学生数学建模能力的影响。前两个设计周期将侧重于技术开发和简短的亲自实验室测试,有4名教师和16名学生。设计周期3和4将涉及两个实地测试,8名教师和400名学生。第五个设计周期将涉及一项执行研究,以进一步探讨研究问题。 学生的学习将通过数学建模子能力测试进行评估。学生的互动模式将通过视频和课堂视频的定性分析进行评估。该计划在课堂实施方面或多或少有效的条件将通过观察,访谈和实施教师的日志来衡量。该平台的最终版本将在各个K-16数学建模社区托管并广泛提供。发现研究preK-12计划(DRK-12)旨在通过研究和开发创新资源,模型和工具,显着提高preK-12学生和教师的科学,技术,工程和数学(STEM)的学习和教学。DRK-12计划中的项目建立在STEM教育的基础研究以及为拟议项目提供理论和经验依据的先前研究和开发工作的基础上。该项目由学生和教师创新技术体验(ITEST)计划共同资助,该计划支持建立对实践,计划元素,有助于增加学生对科学,技术,工程,信息和通信技术(ICT)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Chao其他文献

A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions.
茶杯里的风暴——仿生肺微生理系统与深度学习算法相结合,用于监测肺部病理和炎症反应。
  • DOI:
    10.1016/j.bios.2022.114772
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Zaozao Chen;Jie Huang;Jing Zhang;Zikang Xu;Qiwei Li;Jun Ouyang;Yuchuan Yan;Shiqi Sun;Hua Ye;Fei Wang;Jianfeng Zhu;Zhangyan Wang;Jie Chao;Yuepu Pu;Zhongze Gu
  • 通讯作者:
    Zhongze Gu
Integrating Computational Thinking into Geoscientific Inquiry About Volcanic Eruption Hazards and Risks
将计算思维融入有关火山喷发危害和风险的地球科学研究中
A non-enzymatic, isothermal amplification sensor for quantifying the relative abundance of emAkkermansia muciniphila/em
一种用于定量黏液阿克曼氏菌/黏液阿克曼氏菌相对丰度的非酶等温扩增传感器
  • DOI:
    10.1039/d4cc03087g
  • 发表时间:
    2024-08-20
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Bing Liu;Chen Shi;Fan Wang;Fangling Xu;Jie Chao;Jiapeng Zhu;Dongliang Yang;Xiangyuan Ouyang
  • 通讯作者:
    Xiangyuan Ouyang
Synthesis and characterization of novel high-oil-absorbing resin based on spherical nanocrystal cellulose
  • DOI:
    10.1016/j.molstruc.2024.140622
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Enfa Fu;Lei He;Jie Chao;Xiande Dai
  • 通讯作者:
    Xiande Dai
Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization
  • DOI:
    https://doi.org/10.1038/s41467-019-09004-4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Honglu Zhang;Yuwang;Huan Zhang;Xiaoguo Liu;Antony Lee;Qiuling Huang;Fei Wang;Jie Chao;Huejie Liu;Jiang Li;Jiye Shi;Xiaolei Zuo;Lihua Wang;Lianhui Wang;Xiaoyu Gao;Carlos Bustamante;Zhongqun Tian;Chunhai Fan
  • 通讯作者:
    Chunhai Fan

Jie Chao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Chao', 18)}}的其他基金

Collaborative Research: Integrating Language-Based AI Across the High School Curriculum to Create Diverse Pathways to AI-Rich Careers
合作研究:将基于语言的人工智能整合到高中课程中,为人工智能丰富的职业创造多样化的途径
  • 批准号:
    2241669
  • 财政年份:
    2023
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Narrative Modeling with StoryQ: Integrating Mathematics, Language Arts, and Computing to Create Pathways to Artificial Intelligence Careers
使用 StoryQ 进行叙事建模:整合数学、语言艺术和计算,打造人工智能职业之路
  • 批准号:
    1949110
  • 财政年份:
    2020
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Computing with R for Mathematical Modeling
使用 R 进行数学建模计算
  • 批准号:
    1742083
  • 财政年份:
    2017
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant

相似海外基金

How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Discovery Projects
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Dynamically Adaptive Prosthetic Limbs Enabled by Autonomous Soft Robotic Interfaces
由自主软机器人接口实现的动态自适应假肢
  • 批准号:
    10095028
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Collaborative R&D
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
  • 批准号:
    MR/X023028/1
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Fellowship
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332722
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332721
  • 财政年份:
    2024
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Development of hardware design system for high-speed dynamically reconfigurable devices
高速动态可重构器件硬件设计系统开发
  • 批准号:
    23K11032
  • 财政年份:
    2023
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Standard Grant
Optical fiber rangefinder dynamically updating resolution and dynamic range by optical frequency modulation
光纤测距仪通过光学频率调制动态更新分辨率和动态范围
  • 批准号:
    23K13342
  • 财政年份:
    2023
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proto-OKN Theme 1: A Dynamically-Updated Open Knowledge Network for Health: Integrating Biomedical Insights with Social Determinants of Health
Proto-OKN 主题 1:动态更新的健康开放知识网络:将生物医学见解与健康的社会决定因素相结合
  • 批准号:
    2333740
  • 财政年份:
    2023
  • 资助金额:
    $ 298.4万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了