Collaborative Research: Integrating Language-Based AI Across the High School Curriculum to Create Diverse Pathways to AI-Rich Careers
合作研究:将基于语言的人工智能整合到高中课程中,为人工智能丰富的职业创造多样化的途径
基本信息
- 批准号:2241669
- 负责人:
- 金额:$ 51.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) is transforming numerous industries and generating enormous wealth. K-12 is the critical stage for youth to develop knowledge of and interest in AI. This project will leverage the interdisciplinarity of AI to create learning opportunities for secondary students from diverse backgrounds. Focusing on natural language-based AI, this project will develop and research a novel AI Across the Curriculum program that integrates AI concepts and practices into the existing high school curriculum. The project team will develop and test a two-hour introductory module and three five-hour modules for mathematics, English language arts (ELA), and history, as well as a 60-hour professional development program for teachers to develop the competencies required to implement the modules. Teachers in math, ELA, and history will implement the modules in a coordinated fashion to offer learning experiences that are coherent across the different disciplines to their students. During the project, 12 teachers and 900 students will directly benefit from participation in the program. The output of the project will advance national prosperity through AI workforce development by enabling high schools to provide high-quality AI education to all students, especially African Americans, Latinx, and females, who are the underrepresented and underserved groups in the field of AI. The project will be led by an interdisciplinary team of AI developers and educators, STEM and humanities educators, learning scientists and designers, and experts on diversity, equity, and inclusion at the Concord Consortium, Carnegie Mellon University, and North Carolina State University. The team will partner with the San Joaquin County Office of Education in California and the Maryland Center for Computing Education and work closely with two school districts, one in CA and one in MD, that serve student populations underrepresented and underserved in the field of AI. Researchers will address three research questions: 1) How do students’ social and disciplinary identities shape their participation in learning of AI knowledge and AI-rich careers? Guided by the intersectional identity theory, the project will capture eight focal students’ learning processes with repeated interviews, video, audio, and screencast recordings, and computer logs. These data will be analyzed using the personal narratives framework and ethnomethodological and conversation-analytic approaches. 2) What and how are new ideas generated by teachers as they seek to coordinate their efforts to integrate AI across the curriculum? Based on the community of practice theory, the project will capture teachers’ idea generation and transaction processes with Professional Development (PD) recordings, online communications, and interviews. These data will be analyzed using the idea authorship framework. 3) To what extent, for whom, and under what conditions does the AI Across the Curriculum program support students to develop knowledge of and interest in AI-rich careers? The demographic and academic backgrounds of 900 students and 12 teachers will be collected via surveys to determine the impact of this approach. An AI & Machine Learning Core Concepts Questionnaire and an AI-Rich Careers Questionnaire will be administered before and after the curriculum. These data will be analyzed quantitatively to determine to what extent, for whom, and under what conditions the modules are beneficial. Through research publications and professional learning resources, the project will increase the capacity of educators and researchers to advance AI education. All technologies, curriculum modules, assessments, and PD materials will be freely available to the public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)正在改变许多行业并创造巨大的财富。K-12是青少年发展人工智能知识和兴趣的关键阶段。该项目将利用人工智能的跨学科性,为来自不同背景的中学生创造学习机会。该项目专注于基于自然语言的人工智能,将开发和研究一种新型的人工智能跨课程计划,将人工智能概念和实践整合到现有的高中课程中。该项目团队将开发和测试一个两小时的入门模块和三个五小时的数学,英语语言艺术(ELA)和历史模块,以及一个60小时的专业发展计划,为教师发展所需的能力来实施这些模块。数学,ELA和历史教师将以协调的方式实施这些模块,为学生提供跨不同学科连贯的学习体验。在该项目期间,12名教师和900名学生将直接受益于参与该计划。该项目的产出将通过人工智能劳动力发展促进国家繁荣,使高中能够为所有学生提供高质量的人工智能教育,特别是非洲裔美国人,拉丁裔和女性,他们是人工智能领域代表性不足和服务不足的群体。该项目将由一个跨学科团队领导,该团队包括人工智能开发人员和教育工作者,STEM和人文教育工作者,学习科学家和设计师,以及康科德联盟,卡内基梅隆大学和北卡罗来纳州州立大学的多样性,公平性和包容性专家。该团队将与加州的圣华金县教育办公室和马里兰州计算教育中心合作,并与两个学区密切合作,一个在加利福尼亚州,一个在马里兰州,为在人工智能领域代表性不足和服务不足的学生群体提供服务。研究人员将解决三个研究问题:1)学生的社会和学科身份如何塑造他们参与学习人工智能知识和人工智能丰富的职业?在交叉认同理论的指导下,该项目将通过重复的访谈、视频、音频和屏幕播放录音以及计算机日志来捕捉八名重点学生的学习过程。这些数据将使用个人叙述框架和民族方法学和对话分析方法进行分析。2)教师在寻求协调他们的努力以将AI整合到整个课程中时,会产生什么以及如何产生新的想法?该项目以实践社区理论为基础,通过专业发展(PD)录音、在线交流和访谈,捕捉教师的想法产生和交易过程。这些数据将使用想法作者框架进行分析。3)在何种程度上,为谁,在什么条件下,AI跨课程计划支持学生发展知识和兴趣,在AI丰富的职业生涯?将通过调查收集900名学生和12名教师的人口统计和学术背景,以确定这种方法的影响。AI机器学习核心概念问卷和AI丰富的职业问卷将在课程之前和之后进行。将对这些数据进行定量分析,以确定这些模块在多大程度上、对谁以及在什么条件下是有益的。通过研究出版物和专业学习资源,该项目将提高教育工作者和研究人员推进人工智能教育的能力。所有的技术,课程模块,评估和PD材料将免费提供给公众。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Chao其他文献
A storm in a teacup -- A biomimetic lung microphysiological system in conjunction with a deep-learning algorithm to monitor lung pathological and inflammatory reactions.
茶杯里的风暴——仿生肺微生理系统与深度学习算法相结合,用于监测肺部病理和炎症反应。
- DOI:
10.1016/j.bios.2022.114772 - 发表时间:
2022 - 期刊:
- 影响因子:12.6
- 作者:
Zaozao Chen;Jie Huang;Jing Zhang;Zikang Xu;Qiwei Li;Jun Ouyang;Yuchuan Yan;Shiqi Sun;Hua Ye;Fei Wang;Jianfeng Zhu;Zhangyan Wang;Jie Chao;Yuepu Pu;Zhongze Gu - 通讯作者:
Zhongze Gu
Integrating Computational Thinking into Geoscientific Inquiry About Volcanic Eruption Hazards and Risks
将计算思维融入有关火山喷发危害和风险的地球科学研究中
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Christopher Lore;Hee;A. Pallant;Charles Connor;Jie Chao - 通讯作者:
Jie Chao
A non-enzymatic, isothermal amplification sensor for quantifying the relative abundance of emAkkermansia muciniphila/em
一种用于定量黏液阿克曼氏菌/黏液阿克曼氏菌相对丰度的非酶等温扩增传感器
- DOI:
10.1039/d4cc03087g - 发表时间:
2024-08-20 - 期刊:
- 影响因子:4.200
- 作者:
Bing Liu;Chen Shi;Fan Wang;Fangling Xu;Jie Chao;Jiapeng Zhu;Dongliang Yang;Xiangyuan Ouyang - 通讯作者:
Xiangyuan Ouyang
Synthesis and characterization of novel high-oil-absorbing resin based on spherical nanocrystal cellulose
- DOI:
10.1016/j.molstruc.2024.140622 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:
- 作者:
Enfa Fu;Lei He;Jie Chao;Xiande Dai - 通讯作者:
Xiande Dai
Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization
- DOI:
https://doi.org/10.1038/s41467-019-09004-4 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Honglu Zhang;Yuwang;Huan Zhang;Xiaoguo Liu;Antony Lee;Qiuling Huang;Fei Wang;Jie Chao;Huejie Liu;Jiang Li;Jiye Shi;Xiaolei Zuo;Lihua Wang;Lianhui Wang;Xiaoyu Gao;Carlos Bustamante;Zhongqun Tian;Chunhai Fan - 通讯作者:
Chunhai Fan
Jie Chao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Chao', 18)}}的其他基金
Leveraging Dynamically Linked Representations in a Semi-Structured Workspace to Cultivate Mathematical Modeling Competencies Among Secondary Students (M2Studio)
利用半结构化工作空间中的动态链接表示来培养中学生的数学建模能力(M2Studio)
- 批准号:
2101382 - 财政年份:2021
- 资助金额:
$ 51.61万 - 项目类别:
Continuing Grant
Narrative Modeling with StoryQ: Integrating Mathematics, Language Arts, and Computing to Create Pathways to Artificial Intelligence Careers
使用 StoryQ 进行叙事建模:整合数学、语言艺术和计算,打造人工智能职业之路
- 批准号:
1949110 - 财政年份:2020
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Computing with R for Mathematical Modeling
使用 R 进行数学建模计算
- 批准号:
1742083 - 财政年份:2017
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
相似国自然基金
电池护照与传感一体化芯片关键技术研究
- 批准号:JCZRLH202500149
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高性能薄膜铌酸锂光子芯片及其TSV集成与异构封装技术研究
- 批准号:JCZRQN202501306
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
有限缓冲约束下混流车间生产与维护集成调度优化研究
- 批准号:JCZRQN202500432
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向骨骼健康的淡水鱼胶原肽制备关键技术研究与集成应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
柔性多模态物化传感器件的集成及应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于BIM-GIS集成技术的建筑工程三维可视化动态管理与应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
低碳节能型燃料在船舶上的应用集成技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
粉葛种苗繁育栽培及深加工技术集成研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向集成电路使用的高纯石英材料提纯研究
- 批准号:2025C03023
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
科技对口支援和东西部协作项目-四川青稞高值化精深加工关键技术研究及产业化应用
- 批准号:2025C04040
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325837 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325836 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
- 批准号:
2310412 - 财政年份:2023
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant
IntBIO: Collaborative Research: Phenotypes of the Anthropocene: integrating the consequences of sensory stressors across biological scales
IntBIO:合作研究:人类世的表型:整合跨生物尺度的感觉压力源的后果
- 批准号:
2316364 - 财政年份:2023
- 资助金额:
$ 51.61万 - 项目类别:
Standard Grant