Sheaves, Representations, and Dualities

滑轮、表示和对偶性

基本信息

  • 批准号:
    2101507
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

A duality in mathematics or theoretical physics is a correspondence between two theories which allows one to relate key phenomena in one theory to those in the other, despite their somewhat different, in a sense opposite, nature. A rough analogy is to the relation between a visual image and its reflection in a mirror. This project is in representation theory, that is, the study of algebraic structure of symmetries. Fundamental dualities have been playing an increasingly central role in the subject. One such duality is geometric Langlands duality, an outgrowth of reciprocity laws in number theory. Another is mirror symmetry, a phenomenon in algebraic geometry with origins in physics. The present project will derive further consequences of these fundamental ideas to representation theory. An additional goal is to study the common features of different dualities that appear in representation theory in order to find a unified approach resulting in a better understanding of the nature of the observed phenomena. The Principal Investigator will involve graduate and undergraduate students in projects thus promoting mathematical education and research at various levels. The project has several aims. One is to advance rapidly developing topological methods in the theory of modular representations. Another is to further develop etale sheaf methods in harmonic analysis on p-adic groups and finite groups of Lie type. Here we plan to work on uncovering the geometric phenomena underlying the theory of endoscopy in harmonic analysis on p-adic groups. Finally, the PI will continue to work on the theory of quantized symplectic resolutions, an exciting recent chapter in representation theory with surprising connections to physics and algebraic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学或理论物理学中的二元性是两种理论之间的对应关系,它允许一种理论中的关键现象与另一种理论中的关键现象联系起来,尽管它们的性质有些不同,在某种意义上是相反的。一个粗略的类比是视觉图像与其在镜子中的反射之间的关系。该项目属于表示论,即对称性代数结构的研究。基本的二元性在该学科中发挥着越来越重要的作用。其中一种对偶性是几何朗兰兹对偶性,它是数论中互易定律的产物。另一个是镜像对称,这是代数几何中的一种现象,起源于物理学。本项目将进一步推导出这些基本思想对表示理论的影响。另一个目标是研究表示论中出现的不同对偶性的共同特征,以便找到统一的方法,从而更好地理解观察到的现象的本质。首席研究员将让研究生和本科生参与项目,从而促进各个层面的数学教育和研究。该项目有几个目标。一是推进模表示理论中快速发展的拓扑方法。另一个是进一步发展etale层方法在p进群和李型有限群的调和分析中。在这里,我们计划致力于揭示 p 进群调和分析中内窥镜理论背后的几何现象。最后,PI 将继续致力于量子化辛分辨率理论的研究,这是表示论中令人兴奋的最新章节,与物理学和代数几何有着惊人的联系。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ON THE STRUCTURE OF THE AFFINE ASYMPTOTIC HECKE ALGEBRAS
仿射渐近Hecke代数的结构
  • DOI:
    10.1007/s00031-022-09790-0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    BEZRUKAVNIKOV, ROMAN;DAWYDIAK, STEFAN;DOBROVOLSKA, GALYNA
  • 通讯作者:
    DOBROVOLSKA, GALYNA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Bezrukavnikov其他文献

The Mathematics of Joseph Bernstein
  • DOI:
    10.1007/s00029-016-0291-5
  • 发表时间:
    2016-11-04
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Roman Bezrukavnikov;Alexander Braverman;Michael Finkelberg;Dennis Gaitsgory
  • 通讯作者:
    Dennis Gaitsgory

Roman Bezrukavnikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Bezrukavnikov', 18)}}的其他基金

Wall-Crossing and Dualities in Representation Theory
表示论中的跨越和对偶性
  • 批准号:
    1601953
  • 财政年份:
    2016
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Categories of sheaves, canonical bases and harmonic analysis
滑轮类别、规范基和谐波分析
  • 批准号:
    1102434
  • 财政年份:
    2011
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Conference: Derived Categories of Algebro-Geometric Origin and Integrable Systems
会议:代数几何原点和可积系统的派生范畴
  • 批准号:
    1047530
  • 财政年份:
    2010
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
  • 批准号:
    0854764
  • 财政年份:
    2009
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Affine Flag Varieties and Quantization in Postive Characteristic
仿射旗簇和正特征的量化
  • 批准号:
    0505466
  • 财政年份:
    2005
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Affine Flag Varieties and Quantization in Postive Characteristic
仿射旗簇和正特征的量化
  • 批准号:
    0625234
  • 财政年份:
    2005
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Sheaves on Affine Flags, Springer Fibers, and Representation Theory
仿射旗上的滑轮、施普林格纤维和表示论
  • 批准号:
    0341076
  • 财政年份:
    2002
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Sheaves on Affine Flags, Springer Fibers, and Representation Theory
仿射旗上的滑轮、施普林格纤维和表示论
  • 批准号:
    0071967
  • 财政年份:
    2000
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
  • 批准号:
    2401384
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
  • 批准号:
    2337451
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
  • 批准号:
    FL230100256
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Australian Laureate Fellowships
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
  • 批准号:
    ES/X002101/2
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
  • 批准号:
    2339071
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
  • 批准号:
    2401114
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了