Sheaves on Affine Flags, Springer Fibers, and Representation Theory

仿射旗上的滑轮、施普林格纤维和表示论

基本信息

  • 批准号:
    0071967
  • 负责人:
  • 金额:
    $ 6.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2003-09-30
  • 项目状态:
    已结题

项目摘要

Previous results of the investigator and collaborators establisha relation between coherent sheaves on a Steinberg variety of a complexsimple algebraic group, and perverse sheaves on the affine flag variety ofthe Langlands dual group. Since the latter are known, by the work of Kazhdanand Lusztig, to be related to representations of quantum groups at a rootof unity, and hence also to representations of algebraic groups in primecharacteristic, our results have implications for that theories. They also indicate that there should be a relation between the geometryof perverse sheaves on affine flag varieties, and non-restricted representations of quantum groups or Lie algebras in prime characteristics.The principal goal of the present project is to develop this kind of relationship, thus providing a new tool for the theory of non-restricted representations. It is expected, in particular, to yield a proof and aconceptual explanation for recent numerical conjectures by Lusztig. The methods and ideology of the present work are partly based on the geometricapproach to the Langlands program, due to Drinfeld. Another goal of the projectis to investigate consequences of the above mentioned results to that theory. A key to new developments, and a source of inspiration in mathematics often lie in discovery of parallelism (equivalence) betweenseemingly unrelated objects or theories. Representation theory is a richsource of examples of that kind: though formally being a branch of algebra,the modern theory relies heavily on geometric disciplines, such as topology and algebraic geometry. The principle goal of the present projectis to develop geometric language for a branch of representation theorywhere it has been lacking so far, namely the so called theory of non-restrictedmodular representations. In the corresponding algebraic constructions divisibilityproperties of integral numbers by a particular prime number are relevant.The geometry apparently related to this deals with particular infinitedimensional objects, encountered also in mathematical physics(conformal field theory), and in number theory (Langlands duality theory).This construction is expected to provide new tools for the above mentionedbranch of representation theory; in particular, it is expected to yield aproof of certain conjectures by leading experts in the field.
研究者和合作者先前的结果建立了复简单代数群的Steinberg变体上的相干束和Langlands对偶群的仿射旗变体上的反常束之间的关系。由于后者是已知的,通过Kazhdanand Lusztig的工作,与统一根上的量子群的表示有关,因此也与初始特征中的代数群的表示有关,我们的结果对这些理论具有启示意义。他们还指出,在仿射标志簇上的反常束的几何与量子群或李代数在素数特征上的非限制表示之间应该存在一种关系。本项目的主要目标是发展这种关系,从而为非限制表征理论提供一个新的工具。特别是,它被期望为Lusztig最近的数值猜想提供一个证明和概念上的解释。由于德林菲尔德的原因,目前工作的方法和思想部分是基于朗兰兹纲领的几何方法。该项目的另一个目标是调查上述结果对该理论的影响。数学新发展的关键和灵感来源往往在于发现看似不相关的物体或理论之间的平行性(等效性)。表征理论是这类例子的丰富来源:虽然形式上是代数的一个分支,但现代理论严重依赖于几何学科,如拓扑和代数几何。目前的主要目标是为表征理论的一个分支开发几何语言,这是迄今为止它所缺乏的,即所谓的非限制模表征理论。在相应的代数构造中,整数可被特定素数整除的性质是相关的。显然与此相关的几何学处理的是特定的无限大维物体,在数学物理(共形场论)和数论(朗兰兹对偶理论)中也遇到过。这种建构有望为表征理论的上述分支提供新的工具;特别是,它有望证明该领域顶尖专家的某些猜想。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Bezrukavnikov其他文献

The Mathematics of Joseph Bernstein
  • DOI:
    10.1007/s00029-016-0291-5
  • 发表时间:
    2016-11-04
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Roman Bezrukavnikov;Alexander Braverman;Michael Finkelberg;Dennis Gaitsgory
  • 通讯作者:
    Dennis Gaitsgory

Roman Bezrukavnikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Bezrukavnikov', 18)}}的其他基金

Sheaves, Representations, and Dualities
滑轮、表示和对偶性
  • 批准号:
    2101507
  • 财政年份:
    2021
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Wall-Crossing and Dualities in Representation Theory
表示论中的跨越和对偶性
  • 批准号:
    1601953
  • 财政年份:
    2016
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Categories of sheaves, canonical bases and harmonic analysis
滑轮类别、规范基和谐波分析
  • 批准号:
    1102434
  • 财政年份:
    2011
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Conference: Derived Categories of Algebro-Geometric Origin and Integrable Systems
会议:代数几何原点和可积系统的派生范畴
  • 批准号:
    1047530
  • 财政年份:
    2010
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
  • 批准号:
    0854764
  • 财政年份:
    2009
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Affine Flag Varieties and Quantization in Postive Characteristic
仿射旗簇和正特征的量化
  • 批准号:
    0505466
  • 财政年份:
    2005
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Affine Flag Varieties and Quantization in Postive Characteristic
仿射旗簇和正特征的量化
  • 批准号:
    0625234
  • 财政年份:
    2005
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Continuing Grant
Sheaves on Affine Flags, Springer Fibers, and Representation Theory
仿射旗上的滑轮、施普林格纤维和表示论
  • 批准号:
    0341076
  • 财政年份:
    2002
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Standard Grant

相似国自然基金

随机多重分形的时维谱分布理论及Affine类时频处理技术
  • 批准号:
    60702016
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
  • 批准号:
    23K03063
  • 财政年份:
    2023
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Postdoctoral Fellowships
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
  • 批准号:
    2713401
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Studentship
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    RGPIN-2022-03298
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Geometry of Conjugacy and K-Theory in Affine Weyl Groups
RUI:仿射外尔群中的共轭几何和 K 理论
  • 批准号:
    2202017
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Standard Grant
A rational approach to affine quantum algebras
仿射量子代数的理性方法
  • 批准号:
    DGECR-2022-00440
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Discovery Launch Supplement
Affine and double affine quantum algebras
仿射和双仿射量子代数
  • 批准号:
    RGPIN-2019-04799
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Affine Oriented Frobenius Brauer Categories
量子仿射定向 Frobenius Brauer 类别
  • 批准号:
    575291-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Affine Group Schemes
仿射群方案
  • 批准号:
    573168-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 6.04万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了