Affine Flag Varieties and Quantization in Postive Characteristic

仿射旗簇和正特征的量化

基本信息

项目摘要

The project consists of two parts: the first one is devoted to descriptionof constructible sheaves on homogeneous spaces (mostly of the loop groups)in terms of coherent sheaves; the second one concerns with study of categories of coherent sheaves by the method of quantization in positive characteristic. The first one is a continuation of our previous work inspired by the (localversion of) "geometric Langlands duality" conjecture of Beilinson and Drinfeld.The second one is suggested by our work (with Mirkovic and Rumynin) on geometric approach (especially, use of D-modules) in modular representation theory. In some situations the two constructions lead to the same (t-)structures on the category of coherent sheaves.The results of the project are expected to yield a better understanding of the nature of this intriguing coincidence.From a formal point of view representation theory is a branch of algebra.However, many of its famous advances were due to discovery of connections toother disciplines such as differential or algebraic geometry, where geometricintuition can be applied. In a previous work we developed such geometric methods for a branch of representation theory called modular representationtheory (where the role of numbers is played by residues of integers modulo a fixed prime number). One of the goals of the present project is to "repaythe debt of algebra to geometry" by applying ideas stemming from thiswork to questions in algebraic geometry. The geometric structures arising fromsuch applications also appear in the study of some topological objects relatedto loop groups (whose definition is similar in spirit to constructions of physists' String Theory). This miraculous coincidence has strong technicalconsequences; we hope to get a better understanding of its nature as a resultof the work on the project.
该项目由两部分组成:第一部分致力于用凝聚层来描述齐次空间(主要是圈群)上的可构造层;第二部分涉及用正特征量子化的方法来研究凝聚层的范畴。第一个是我们以前工作的继续,受到Beilinson和Drinfeld的“几何Langlands对偶”猜想的启发,第二个是我们在模表示理论中的几何方法(特别是D-模的使用)的工作(与Mirkovic和Rumynin)中提出的。在某些情况下,这两种结构导致了相干层范畴上相同的(t-)结构。该项目的结果有望更好地理解这种有趣的巧合的本质。从形式的角度来看,表示论是代数的一个分支。然而,它的许多著名进展是由于发现了与其他学科的联系,如微分几何或代数几何,where geometricintuition几何intuition直觉can be applied应用.在以前的工作中,我们开发了这样的几何方法表示理论的分支称为modular representationtheory(其中的作用,号码是发挥剩余的整数模一个固定的素数)。本项目的目标之一是“偿还债务的代数几何”的应用思想源于这项工作的问题,代数几何。从这些应用中产生的几何结构也出现在一些与圈群有关的拓扑对象的研究中(圈群的定义在精神上与物理学家的弦理论的结构相似)。这个奇迹般的巧合有很强的技术后果;我们希望通过这个项目的工作更好地了解它的本质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Bezrukavnikov其他文献

The Mathematics of Joseph Bernstein
  • DOI:
    10.1007/s00029-016-0291-5
  • 发表时间:
    2016-11-04
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Roman Bezrukavnikov;Alexander Braverman;Michael Finkelberg;Dennis Gaitsgory
  • 通讯作者:
    Dennis Gaitsgory

Roman Bezrukavnikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Bezrukavnikov', 18)}}的其他基金

Sheaves, Representations, and Dualities
滑轮、表示和对偶性
  • 批准号:
    2101507
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Wall-Crossing and Dualities in Representation Theory
表示论中的跨越和对偶性
  • 批准号:
    1601953
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Categories of sheaves, canonical bases and harmonic analysis
滑轮类别、规范基和谐波分析
  • 批准号:
    1102434
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Derived Categories of Algebro-Geometric Origin and Integrable Systems
会议:代数几何原点和可积系统的派生范畴
  • 批准号:
    1047530
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
  • 批准号:
    0854764
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Affine Flag Varieties and Quantization in Postive Characteristic
仿射旗簇和正特征的量化
  • 批准号:
    0505466
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Sheaves on Affine Flags, Springer Fibers, and Representation Theory
仿射旗上的滑轮、施普林格纤维和表示论
  • 批准号:
    0341076
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Sheaves on Affine Flags, Springer Fibers, and Representation Theory
仿射旗上的滑轮、施普林格纤维和表示论
  • 批准号:
    0071967
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Generic Flag Varieties
通用旗帜品种
  • 批准号:
    RGPIN-2020-04008
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
  • 批准号:
    DGECR-2022-00436
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Mirror symmetry and quiver flag varieties
镜像对称和箭袋旗品种
  • 批准号:
    RGPIN-2022-03013
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
  • 批准号:
    RGPIN-2019-06567
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Combinatorial Algebraic Geometry: Flag Varieties, Toric Geometry, and Applications
职业:组合代数几何:旗形簇、环面几何和应用
  • 批准号:
    2142656
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Orbits on flag varieties and their combinatorics
旗形品种的轨道及其组合
  • 批准号:
    21K03184
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
  • 批准号:
    RGPIN-2019-06567
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Generic Flag Varieties
通用旗帜品种
  • 批准号:
    RGPIN-2020-04008
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Generic Flag Varieties
通用旗帜品种
  • 批准号:
    RGPIN-2020-04008
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Equivariant symplectic and algebraic geometry of flag and spherical varieties
旗形簇和球簇的等变辛几何和代数几何
  • 批准号:
    RGPIN-2019-06567
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了