Zeros and Moments of L-Functions
L 函数的零点和矩
基本信息
- 批准号:2101769
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is in the area of analytic number theory, focusing on the study of L-functions, which play a central role in the field. L-functions are generalizations of the Riemann zeta function, which encodes important information about the distribution of prime numbers. More generally, L-functions package information about important arithmetic objects (such as the rank of an elliptic curve or the class number) which are of great interest. This project aims to develop new tools in the study of L-functions, particularly by focusing on their zeros and their central values, with the hope of extracting arithmetic information. The investigator will advise PhD students and provide mentorship to students coming from groups that are underrepresented in mathematics.The award will study moments and ratios of L-functions in families, both in the number field and in the function field setting. The final goal is that of understanding the mechanism through which lower-order terms in the moment asymptotics work and the structure of each family. Another theme of the project is studying zeros of L-functions in families, focusing on obtaining vanishing and non-vanishing results. The methods employed will be analytic number theory techniques, including use of functional equations, summation formulas, exponential sums, sieve theory ideas and random matrix theory inspired insights.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是在解析数论领域,专注于L-函数的研究,在该领域发挥着核心作用。L-函数是黎曼zeta函数的推广,它编码了关于素数分布的重要信息。更一般地说,L-函数封装了关于重要算术对象的信息(例如椭圆曲线的秩或类号),这些信息非常有趣。该项目旨在开发研究L函数的新工具,特别是通过关注它们的零点和中心值,希望提取算术信息。该研究员将为博士生提供建议,并为来自数学代表性不足的群体的学生提供指导。该奖项将研究家庭中L函数的矩和比率,无论是在数域还是在函数域设置中。最终的目标是理解矩渐近中低阶项的工作机制和每个族的结构。 该项目的另一个主题是研究族中L-函数的零点,重点是获得消失和非消失的结果。所采用的方法将是解析数论技术,包括使用函数方程、求和公式、指数和、筛法理论思想和随机矩阵理论启发的见解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hilbert transforms and the equidistribution of zeros of polynomials
希尔伯特变换和多项式零点的均分布
- DOI:10.1016/j.jfa.2021.109199
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Carneiro, Emanuel;Das, Mithun Kumar;Florea, Alexandra;Kumchev, Angel V.;Malik, Amita;Milinovich, Micah B.;Turnage-Butterbaugh, Caroline;Wang, Jiuya
- 通讯作者:Wang, Jiuya
The Ratios Conjecture and upper bounds for negative moments of ?-functions over function fields
函数域上 ?-函数负矩的比率猜想和上限
- DOI:10.1090/tran/8907
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Bui, Hung;Florea, Alexandra;Keating, Jonathan
- 通讯作者:Keating, Jonathan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Florea其他文献
Negative discrete moments of the derivative of the Riemann zeta‐function
黎曼 zeta 函数导数的负离散矩
- DOI:
10.1112/blms.13092 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
H. Bui;Alexandra Florea;M. Milinovich - 通讯作者:
M. Milinovich
The fourth moment of quadratic Dirichlet L-functions over function fields
- DOI:
10.1007/s00039-017-0409-8 - 发表时间:
2016-09 - 期刊:
- 影响因子:2.2
- 作者:
Alexandra Florea - 通讯作者:
Alexandra Florea
Hitting the Breaks While Working from Home. Changes in Taking-Breaks Behaviours During Pandemic Lockdowns
在家工作时休息一下。
- DOI:
10.31577/sociologia.2023.55.6.22 - 发表时间:
2023 - 期刊:
- 影响因子:0.6
- 作者:
Bogdan Voicu;Dana țălnar;Adriana Neguț;Eugen Glăvan;Laura Tufă;Alexandra Florea - 通讯作者:
Alexandra Florea
Improving the Error Term in the Mean Value of in the Hyperelliptic Ensemble
- DOI:
10.1093/imrn/rnv387 - 发表时间:
2016-09 - 期刊:
- 影响因子:1
- 作者:
Alexandra Florea - 通讯作者:
Alexandra Florea
The second and third moment of L(1/2,χ) in the hyperelliptic ensemble
- DOI:
10.1515/forum-2015-0152 - 发表时间:
2016-08 - 期刊:
- 影响因子:0.8
- 作者:
Alexandra Florea - 通讯作者:
Alexandra Florea
Alexandra Florea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Florea', 18)}}的其他基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 23.1万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 23.1万 - 项目类别:
Continuing Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Discovery Grants Program - Individual
Moments of Large Families of L-Functions and Related Questions
L-函数大族的矩及相关问题
- 批准号:
2101806 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Standard Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别:
Discovery Grants Program - Individual
Zeros and moments of L-functions
L 函数的零点和矩
- 批准号:
312430-2005 - 财政年份:2009
- 资助金额:
$ 23.1万 - 项目类别:
Discovery Grants Program - Individual
Recovery of Functions via Moments: Hausdorff Case
通过矩恢复功能:Hausdorff 案例
- 批准号:
0906639 - 财政年份:2009
- 资助金额:
$ 23.1万 - 项目类别:
Standard Grant
Zeros and moments of L-functions
L 函数的零点和矩
- 批准号:
312430-2005 - 财政年份:2008
- 资助金额:
$ 23.1万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652609 - 财政年份:2007
- 资助金额:
$ 23.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions.
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩。
- 批准号:
0652312 - 财政年份:2007
- 资助金额:
$ 23.1万 - 项目类别:
Standard Grant