Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
基本信息
- 批准号:RGPIN-2020-06032
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important field of research in analytic number theory is the study of moments of L-functions. At the beginning of the twentieth century, researchers including Bohr, Landau, Hardy, and Littlewood realized that bounds for L-functions had important number theoretic applications. Hardy and Littlewood studied the 2k-th moments of the Riemann zeta function on the critical line, denoted I_k(T) where k is positive. In 1918 Hardy-Littlewood asymptotically evaluated the second moment and in 1926 Ingham asymptotically evaluated the fourth moment. I_k(T) has not been evaluated for any other value of k. In 1998 Keating and Snaith, using a random matrix model, gave a precise conjecture for the asymptotic size of I_k(T). In 1998 Conrey and Gonek linked I_k(T) to correlation sums of divisor functions in the cases k=3 and k=4. In 2006 Conrey et al. conjectured the full main term asymptotic formula for I_k(T). In 2016, I gave a proof in that an asymptotic formula for certain correlation sums of ternary divisor functions implies the full main term asymptotic for the sixth moment of the zeta function. The main theme of this proposal is to study the connection between mean values of L-functions and correlation sums of arithmetic functions. In particular, I shall focus on correlations sums of higher divisor functions. I aim to establish an asymptotic formula for the eighth moment of the Riemann zeta function based on my recent NSERC funded work on the sixth moment of the zeta function and also establish asymptotics for related moments of the zeta function. The moments of I_k(T) can be modelled by certain mean values of long Dirichlet polynomials with higher divisor coefficients. In collaboration with Alia Hamieh we aim to prove a more precise asymptotic for these mean values thus verifying a 1998 conjecture of Conrey-Gonek and special cases of a recent conjecture of Conrey-Keating. Using techniques from my work on the sixth moment of the zeta function, I will also study other families of mean values of L-functions. This includes the discrete mean values of the derivative of the zeta function and mean values of quadratic Dirichlet L-functions. A final element of the proposal is to explore the size of prime counting functions and related error terms. Montgomery has made a deep conjecture regarding the size of the error term in the prime number theorem. I aim to prove this assuming the Linear Independence conjecture. Also I shall study the size of the sum of the Mobius function, M(x), attempting to exhibit large values. A number of these objectives will be suitable for undergraduate and graduate students.
解析数论的一个重要研究领域是l -函数矩的研究。在二十世纪初,包括玻尔、朗道、哈代和利特尔伍德在内的研究人员意识到l函数的界在数论上有重要的应用。Hardy和Littlewood研究了Riemann zeta函数在临界线上的第k个矩,记作I_k(T),其中k为正。1918年Hardy-Littlewood渐近地求出了第二个矩,1926年Ingham渐近地求出了第四个矩。I_k(T)没有对k的任何其他值进行评估。1998年,Keating和Snaith使用随机矩阵模型,给出了I_k(T)的渐近大小的精确猜想。1998年,Conrey和Gonek将I_k(T)与k=3和k=4情况下的除数函数的相关和联系起来。2006年Conrey等人推测了I_k(T)的完整主项渐近公式。在2016年,我证明了某些三元除数函数的相关和的渐近公式暗示了zeta函数的第六阶矩的完整主项渐近。本文的主题是研究l函数的均值与算术函数的相关和之间的联系。特别地,我将着重于高因子函数的相关性和。我的目标是基于我最近NSERC资助的关于zeta函数的第六矩的工作,建立黎曼zeta函数的第八矩的渐近公式,并建立zeta函数的相关矩的渐近性。I_k(T)的矩可以用具有较高除数系数的长狄利克雷多项式的某些平均值来表示。在与Alia Hamieh的合作中,我们的目标是证明这些平均值的更精确的渐近,从而验证1998年Conrey-Gonek猜想和最近Conrey-Keating猜想的特殊情况。利用我在zeta函数的第六阶矩上的工作技巧,我还将研究l函数的其他均值族。这包括zeta函数导数的离散均值和二次狄利克雷l函数的均值。该建议的最后一个要素是探索素数计数函数的大小和相关的误差项。Montgomery对素数定理中误差项的大小做了一个深刻的猜想。我的目的是在线性无关猜想的前提下证明这一点。我还将研究莫比乌斯函数M(x)的和的大小,试图展示大的值。其中一些目标将适合本科生和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, Nathan其他文献
Percutaneous reduction and fixation of low energy Lisfranc injuries results in better outcome compared to open reduction and internal fixation: Results from a matched case-control study with minimum 12 months follow up
- DOI:
10.1016/j.injury.2020.10.081 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Coffee Consumption and Periodontal Disease in Males
- DOI:
10.1902/jop.2013.130179 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:4.3
- 作者:
Ng, Nathan;Kaye, Elizabeth Krall;Garcia, Raul I. - 通讯作者:
Garcia, Raul I.
Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis.
- DOI:
10.1007/s00167-021-06464-4 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.8
- 作者:
Zhang, Junren;Ndou, Wofhatwa Solomon;Ng, Nathan;Gaston, Paul;Simpson, Philip M.;Macpherson, Gavin J.;Patton, James T.;Clement, Nicholas D. - 通讯作者:
Clement, Nicholas D.
BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes.
- DOI:
10.1126/sciadv.abq7240 - 发表时间:
2022-11-18 - 期刊:
- 影响因子:13.6
- 作者:
Takahashi, Hiroyuki;Kuhtreiber, Willem M.;Keefe, Ryan C.;Lee, Amanda H.;Aristarkhova, Anna;Dias, Hans F.;Ng, Nathan;Nelson, Kacie J.;Bien, Stephanie;Scheffey, Danielle;Faustman, Denise L. - 通讯作者:
Faustman, Denise L.
Rates of Displacement and Patient-Reported Outcomes Following Conservative Treatment of Minimally Displaced Lisfranc Injury
- DOI:
10.1177/1071100719895482 - 发表时间:
2019-12-17 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Ng, Nathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, Nathan', 18)}}的其他基金
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
数学物理中精确可解模型的代数方法
- 批准号:11771015
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
- 批准号:
2316685 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Fellowship Award
Elucidating the molecular mechanisms behind the long-range correlation associated with protein functions based on fluctuating thermodynamics and dynamic cooperativity analysis
基于波动热力学和动态协同分析,阐明与蛋白质功能相关的长程相关性背后的分子机制
- 批准号:
22H02042 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Scattering Amplitudes and Correlation Functions
散射幅度和相关函数
- 批准号:
2207138 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Analysis of the correlation between the novel mfa types of P. gingivalis fimbriae and their functions
牙龈卟啉单胞菌菌毛新MFA类型与其功能的相关性分析
- 批准号:
20K09931 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical correlation functions of the XXZ model at finite temperatures
有限温度下XXZ模型的动态相关函数
- 批准号:
421428217 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Research Units
Universal functional equations for spectrum, thermodynamics and correlation functions of integrable lattice models
可积晶格模型的谱、热力学和相关函数的通用函数方程
- 批准号:
398579888 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Research Grants
Identifying Viscoelastic Characteristic Functions Using Global Digital Image Correlation and Inverse Analysis
使用全局数字图像相关和逆分析识别粘弹性特征函数
- 批准号:
18K03845 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact analysis on dynamical quantum correlation functions and its applications to equilibrium and non-equilibrium systems
动态量子相关函数的精确分析及其在平衡和非平衡系统中的应用
- 批准号:
18K03452 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)