Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
基本信息
- 批准号:RGPIN-2020-06032
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An important field of research in analytic number theory is the study of moments of L-functions. At the beginning of the twentieth century, researchers including Bohr, Landau, Hardy, and Littlewood realized that bounds for L-functions had important number theoretic applications. Hardy and Littlewood studied the 2k-th moments of the Riemann zeta function on the critical line, denoted I_k(T) where k is positive. In 1918 Hardy-Littlewood asymptotically evaluated the second moment and in 1926 Ingham asymptotically evaluated the fourth moment. I_k(T) has not been evaluated for any other value of k. In 1998 Keating and Snaith, using a random matrix model, gave a precise conjecture for the asymptotic size of I_k(T). In 1998 Conrey and Gonek linked I_k(T) to correlation sums of divisor functions in the cases k=3 and k=4. In 2006 Conrey et al. conjectured the full main term asymptotic formula for I_k(T). In 2016, I gave a proof in that an asymptotic formula for certain correlation sums of ternary divisor functions implies the full main term asymptotic for the sixth moment of the zeta function. The main theme of this proposal is to study the connection between mean values of L-functions and correlation sums of arithmetic functions. In particular, I shall focus on correlations sums of higher divisor functions. I aim to establish an asymptotic formula for the eighth moment of the Riemann zeta function based on my recent NSERC funded work on the sixth moment of the zeta function and also establish asymptotics for related moments of the zeta function. The moments of I_k(T) can be modelled by certain mean values of long Dirichlet polynomials with higher divisor coefficients. In collaboration with Alia Hamieh we aim to prove a more precise asymptotic for these mean values thus verifying a 1998 conjecture of Conrey-Gonek and special cases of a recent conjecture of Conrey-Keating. Using techniques from my work on the sixth moment of the zeta function, I will also study other families of mean values of L-functions. This includes the discrete mean values of the derivative of the zeta function and mean values of quadratic Dirichlet L-functions. A final element of the proposal is to explore the size of prime counting functions and related error terms. Montgomery has made a deep conjecture regarding the size of the error term in the prime number theorem. I aim to prove this assuming the Linear Independence conjecture. Also I shall study the size of the sum of the Mobius function, M(x), attempting to exhibit large values. A number of these objectives will be suitable for undergraduate and graduate students.
An important field of research in analytic number theory is the study of moments of L-functions. At the beginning of the twentieth century, researchers including Bohr, Landau, Hardy, and Littlewood realized that bounds for L-functions had important number theoretic applications. Hardy and Littlewood studied the 2k-th moments of the Riemann zeta function on the critical line, denoted I_k(T) where k is positive. In 1918 Hardy-Littlewood asymptotically evaluated the second moment and in 1926 Ingham asymptotically evaluated the fourth moment. I_k(T) has not been evaluated for any other value of k. In 1998 Keating and Snaith, using a random matrix model, gave a precise conjecture for the asymptotic size of I_k(T). In 1998 Conrey and Gonek linked I_k(T) to correlation sums of divisor functions in the cases k=3 and k=4. In 2006 Conrey et al. conjectured the full main term asymptotic formula for I_k(T). In 2016, I gave a proof in that an asymptotic formula for certain correlation sums of ternary divisor functions implies the full main term asymptotic for the sixth moment of the zeta function. The main theme of this proposal is to study the connection between mean values of L-functions and correlation sums of arithmetic functions. In particular, I shall focus on correlations sums of higher divisor functions. I aim to establish an asymptotic formula for the eighth moment of the Riemann zeta function based on my recent NSERC funded work on the sixth moment of the zeta function and also establish asymptotics for related moments of the zeta function. The moments of I_k(T) can be modelled by certain mean values of long Dirichlet polynomials with higher divisor coefficients. In collaboration with Alia Hamieh we aim to prove a more precise asymptotic for these mean values thus verifying a 1998 conjecture of Conrey-Gonek and special cases of a recent conjecture of Conrey-Keating. Using techniques from my work on the sixth moment of the zeta function, I will also study other families of mean values of L-functions. This includes the discrete mean values of the derivative of the zeta function and mean values of quadratic Dirichlet L-functions. A final element of the proposal is to explore the size of prime counting functions and related error terms. Montgomery has made a deep conjecture regarding the size of the error term in the prime number theorem. I aim to prove this assuming the Linear Independence conjecture. Also I shall study the size of the sum of the Mobius function, M(x), attempting to exhibit large values. A number of these objectives will be suitable for undergraduate and graduate students.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ng, Nathan其他文献
Percutaneous reduction and fixation of low energy Lisfranc injuries results in better outcome compared to open reduction and internal fixation: Results from a matched case-control study with minimum 12 months follow up
- DOI:
10.1016/j.injury.2020.10.081 - 发表时间:
2021-04-22 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Coffee Consumption and Periodontal Disease in Males
- DOI:
10.1902/jop.2013.130179 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:4.3
- 作者:
Ng, Nathan;Kaye, Elizabeth Krall;Garcia, Raul I. - 通讯作者:
Garcia, Raul I.
Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis.
- DOI:
10.1007/s00167-021-06464-4 - 发表时间:
2022-08 - 期刊:
- 影响因子:3.8
- 作者:
Zhang, Junren;Ndou, Wofhatwa Solomon;Ng, Nathan;Gaston, Paul;Simpson, Philip M.;Macpherson, Gavin J.;Patton, James T.;Clement, Nicholas D. - 通讯作者:
Clement, Nicholas D.
BCG vaccinations drive epigenetic changes to the human T cell receptor: Restored expression in type 1 diabetes.
- DOI:
10.1126/sciadv.abq7240 - 发表时间:
2022-11-18 - 期刊:
- 影响因子:13.6
- 作者:
Takahashi, Hiroyuki;Kuhtreiber, Willem M.;Keefe, Ryan C.;Lee, Amanda H.;Aristarkhova, Anna;Dias, Hans F.;Ng, Nathan;Nelson, Kacie J.;Bien, Stephanie;Scheffey, Danielle;Faustman, Denise L. - 通讯作者:
Faustman, Denise L.
Rates of Displacement and Patient-Reported Outcomes Following Conservative Treatment of Minimally Displaced Lisfranc Injury
- DOI:
10.1177/1071100719895482 - 发表时间:
2019-12-17 - 期刊:
- 影响因子:2.7
- 作者:
Chen, Pengchi;Ng, Nathan;Amin, Anish K. - 通讯作者:
Amin, Anish K.
Ng, Nathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ng, Nathan', 18)}}的其他基金
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Zeros of L-functions and applications
L-函数的零点及其应用
- 批准号:
RGPIN-2015-05972 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Prime numbers and L-functions
素数和 L 函数
- 批准号:
312430-2010 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
枳实通降颗粒通过LncRNA TUG1/microRNA-9-5p/MAPK信号轴调控巨噬细胞代谢重编程防治POI及相关性肺损伤的机制研究
- 批准号:2025JJ90028
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
内源性逆转录病毒在胎盘绒毛外滋养细胞的成熟与衰老过程中的功能解析及其与妊娠疾病发生的相关性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NETs通过METTL3介导USF2 m6A修饰促进脓毒症相关性凝血功能障碍
- 批准号:2025JJ50594
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
冠脉微循环障碍与Tp-e间期、Tp-e/QT比值的相关性研究
- 批准号:2025JJ81114
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
血清Netrin-4水平与多囊卵巢综合征的相关性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线粒体功能障碍与细胞程序性死亡相关基因在葡萄膜黑色素瘤中相关性研究及风险模型建立
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
结合形态、功能、转录组和表观基因组解析PV神经元在视皮层可塑性中的作用和机制
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
肾虚在类风湿关节炎卵巢储备功能下降中的影响及相关性研究
- 批准号:2024QN075
- 批准年份:2024
- 资助金额:3.0 万元
- 项目类别:省市级项目
cGAS-STING阻断联合功能化纳米酶催化策略在逆转脓毒血症相关性
急性肺损伤的作用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
代谢物8-HETrE通过抑制SPHK1/S1P轴调节线粒体功能以延缓代谢
障碍相关性脂肪性肝纤维化进程中的作用与机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
- 批准号:
2316685 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Fellowship Award
Elucidating the molecular mechanisms behind the long-range correlation associated with protein functions based on fluctuating thermodynamics and dynamic cooperativity analysis
基于波动热力学和动态协同分析,阐明与蛋白质功能相关的长程相关性背后的分子机制
- 批准号:
22H02042 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scattering Amplitudes and Correlation Functions
散射幅度和相关函数
- 批准号:
2207138 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Continuing Grant
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Moments of L-functions, correlation sums, and primes
L 函数的矩、相关和和素数
- 批准号:
RGPIN-2020-06032 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Analysis of the correlation between the novel mfa types of P. gingivalis fimbriae and their functions
牙龈卟啉单胞菌菌毛新MFA类型与其功能的相关性分析
- 批准号:
20K09931 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical correlation functions of the XXZ model at finite temperatures
有限温度下XXZ模型的动态相关函数
- 批准号:
421428217 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Research Units
Universal functional equations for spectrum, thermodynamics and correlation functions of integrable lattice models
可积晶格模型的谱、热力学和相关函数的通用函数方程
- 批准号:
398579888 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Research Grants
Identifying Viscoelastic Characteristic Functions Using Global Digital Image Correlation and Inverse Analysis
使用全局数字图像相关和逆分析识别粘弹性特征函数
- 批准号:
18K03845 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exact analysis on dynamical quantum correlation functions and its applications to equilibrium and non-equilibrium systems
动态量子相关函数的精确分析及其在平衡和非平衡系统中的应用
- 批准号:
18K03452 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)