Quantitative Aspects of Arithmetic Statistics
算术统计的定量方面
基本信息
- 批准号:2101874
- 负责人:
- 金额:$ 19.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Arithmetic statistics is concerned with the fundamental objects of number theory – such as number fields and ideal class groups, and asks questions such as how large they can be, or how common they are. It interfaces with a large number of areas of ongoing mathematical research, including algebraic number theory, algebraic geometry, representation theory, and Fourier analysis. The focus of this project will be the study of a family of problems in arithmetic statistics and applications to other problems in arithmetic statistics. The PI will continue his development of coursework, with associated book projects, at both the graduate and undergraduate levels, and the funding will also bolster the intellectual atmosphere in his home department, by funding graduate students, inviting visiting speakers, and assisting with the Columbia Math Circle.Technically, the research will focus on the improvement of upper bounds and error terms in arithmetic statistics. One aspect of the project will leverage the theory of Sato-Shintani zeta functions to improve error terms in various number field counting results, bypassing a known obstacle. A second aspect will bring harmonic analysis into Bhargava's averaging method, again leading to stronger quantitative results (with partial overlap with the first aspect). A third aspect aims to improve upon the best known general upper bound for counting number fields, which is joint work of the PI with Robert Lemke Oliver.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算术统计学关注的是数论的基本对象——比如数域和理想类群,并提出诸如它们有多大,或者它们有多普遍等问题。它与大量正在进行的数学研究领域相结合,包括代数数论、代数几何、表示理论和傅立叶分析。这个项目的重点将是研究算术统计中的一系列问题以及在算术统计中的其他问题的应用。PI将继续他在研究生和本科生阶段的课程作业和相关书籍项目的开发,这笔资金也将通过资助研究生、邀请客座演讲者和协助哥伦比亚数学圈来加强他所在部门的学术氛围。在技术上,重点研究算术统计中上界和误差项的改进。该项目的一个方面将利用Sato-Shintani zeta函数的理论来改善各种数字字段计数结果中的误差项,绕过已知的障碍。第二个方面将把谐波分析带入巴尔加瓦的平均方法,再次导致更强的定量结果(与第一个方面部分重叠)。第三个方面旨在改进最著名的计数数域的一般上界,这是PI与Robert Lemke Oliver的联合工作。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Thorne其他文献
Improved error estimates for the Davenport–Heilbronn theorems
- DOI:
10.1007/s00208-023-02684-w - 发表时间:
2023-10-04 - 期刊:
- 影响因子:1.400
- 作者:
Manjul Bhargava;Takashi Taniguchi;Frank Thorne - 通讯作者:
Frank Thorne
Secondary terms in counting functions for cubic fields
三次域计数函数中的次要项
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Takashi Taniguchi;Frank Thorne - 通讯作者:
Frank Thorne
Lectures on the p-adic Gross-Zagier formula
p-adic Gross-Zagier 公式讲座
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Takashi Taniguchi;Frank Thorne;Shinichi Kobayashi - 通讯作者:
Shinichi Kobayashi
Frank Thorne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Thorne', 18)}}的其他基金
Zeta Functions and the Distribution of Field Discriminants
Zeta 函数和场判别式的分布
- 批准号:
1201330 - 财政年份:2012
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2303864 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Arithmetic Aspects of the Langlands Program
朗兰兹纲领的算术方面
- 批准号:
2201242 - 财政年份:2022
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Arithmetic Aspects of Special Values of L-Functions
L 函数特殊值的算术方面
- 批准号:
2001409 - 财政年份:2020
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
P-adic Aspects of L-Values, Congruences Between Automorphic Forms, and Arithmetic Applications
L 值的 P 进数方面、自守形式之间的同余以及算术应用
- 批准号:
2001527 - 财政年份:2020
- 资助金额:
$ 19.16万 - 项目类别:
Standard Grant
Arithmetic Aspects of Electric-Magnetic Duality
电磁二象性的算术方面
- 批准号:
2001398 - 财政年份:2020
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant
Arithmetic and algebraic aspects of the dynamics of polynomial semigroups
多项式半群动力学的算术和代数方面
- 批准号:
DP180100201 - 财政年份:2018
- 资助金额:
$ 19.16万 - 项目类别:
Discovery Projects
THE INTERPRETATION OF PAINTINGS OF CONSTELLATION AND SEASONAL LIFE THAT VISUALIZE TIME - WITH THE VIEWPOINT OF CROSSING THE BORDER OF THE GENRES BY USING ARITHMETIC ASPECTS OF ASTRONOMY
时间可视化的星座与季节生命画作的解读——以天文学的数学角度跨越流派界限的观点
- 批准号:
26370145 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic aspects of Mordell-Weil lattices of elliptic K3 surfaces
椭圆 K3 表面 Mordell-Weil 格子的算术方面
- 批准号:
26400023 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic aspects of automorphic forms: Petersson norms and special values of L-functions
自守形式的算术方面:Petersson 范数和 L 函数的特殊值
- 批准号:
EP/L025515/1 - 财政年份:2014
- 资助金额:
$ 19.16万 - 项目类别:
Research Grant
Arithmetic, Geometric and Ergodic Aspects of the Theory of Lie Groups and their discrete subgroups
李群及其离散子群理论的算术、几何和遍历方面
- 批准号:
1265695 - 财政年份:2013
- 资助金额:
$ 19.16万 - 项目类别:
Continuing Grant