Zeta Functions and the Distribution of Field Discriminants
Zeta 函数和场判别式的分布
基本信息
- 批准号:1201330
- 负责人:
- 金额:$ 14.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will apply the theory of zeta functions associated to prehomogeneous vector spaces to study the distribution of field discriminants. Research on counting field discriminants dates back to 1857 work of Hermite, and is the subject of recent breakthroughs by Bhargava and his collaborators. Bhargava's work is essentially geometric in nature, and the PI will develop an alternative approach, using Shintani zeta functions and analytic number theory. Although the zeta function approach is not new, the PI and his collaborator Takashi Taniguchi have developed a method which circumvents a technical difficulty with this approach. This led to a resolution of a well-known conjecture on cubic fields, among other results. The PI will further develop this method to study related questions, including the distribution of quartic and quintic fields.Gauss said that "mathematics is the queen of the sciences and number theory is the queen of mathematics." Number theory has inspired and spurred on the development of many areas of mathematics, and has also seen practical applications, for example in cryptography. Number fields are a foundational object of study in algebraic number theory, which explains the strong interest in studying their discriminants. In contrast, Shintani's theory of zeta functions seems to have received inadequate attention, especially outside Japan. The PI's work will further develop Shintani's theory, with an eye towards solving open problems of broader current interest, and it will also help to bring an active area of Japanese mathematics to the attention of researchers in the United States.
PI将应用与预齐次向量空间相关的zeta函数理论来研究场判别式的分布。计数场判别式的研究可以追溯到1857年Hermite的工作,并且是Bhargava和他的合作者最近突破的主题。Bhargava的工作本质上是几何的,PI将开发一种替代方法,使用Shintani zeta函数和解析数论。虽然zeta函数方法并不新鲜,但PI和他的合作者Takashi Taniguchi已经开发出一种方法,可以规避这种方法的技术困难。这导致了关于三次场的一个著名猜想的解决,以及其他结果。PI将进一步发展这种方法来研究相关问题,包括四次和五次域的分布。高斯说:“数学是科学的女王,数论是数学的女王。“数论启发和刺激了许多数学领域的发展,也看到了实际应用,例如密码学。数域是代数数论中的一个基本研究对象,这也解释了人们对数域判别式研究的浓厚兴趣。相比之下,Shintani的理论zeta函数似乎没有得到足够的重视,特别是在日本以外。PI的工作将进一步发展Shintani的理论,着眼于解决更广泛的当前兴趣的开放问题,它也将有助于使日本数学的一个活跃领域引起美国研究人员的注意。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Thorne其他文献
Improved error estimates for the Davenport–Heilbronn theorems
- DOI:
10.1007/s00208-023-02684-w - 发表时间:
2023-10-04 - 期刊:
- 影响因子:1.400
- 作者:
Manjul Bhargava;Takashi Taniguchi;Frank Thorne - 通讯作者:
Frank Thorne
Secondary terms in counting functions for cubic fields
三次域计数函数中的次要项
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Takashi Taniguchi;Frank Thorne - 通讯作者:
Frank Thorne
Lectures on the p-adic Gross-Zagier formula
p-adic Gross-Zagier 公式讲座
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Takashi Taniguchi;Frank Thorne;Shinichi Kobayashi - 通讯作者:
Shinichi Kobayashi
Frank Thorne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Thorne', 18)}}的其他基金
Quantitative Aspects of Arithmetic Statistics
算术统计的定量方面
- 批准号:
2101874 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant
相似海外基金
GEM: Energy Conversion Associated with Non-equilibrium Velocity Distribution Functions in Dayside Magnetopause Reconnection
GEM:与日侧磁顶重联中非平衡速度分布函数相关的能量转换
- 批准号:
2247718 - 财政年份:2023
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant
Development of a GIS-based method for evaluating the accessibility of pharmacy/pharmacist functions, and Generation of proposals for improving uneven distribution
开发基于 GIS 的方法来评估药房/药剂师职能的可及性,并提出改善分布不均的建议
- 批准号:
22K10446 - 财政年份:2022
- 资助金额:
$ 14.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on value distribution properties of meromorphic functions generated by a wide variety of series and an investigation into their possible algebraic analogues
对各种级数生成的亚纯函数的值分布特性的研究及其可能的代数类似物的研究
- 批准号:
22K03335 - 财政年份:2022
- 资助金额:
$ 14.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
- 批准号:
RGPIN-2021-02952 - 财政年份:2022
- 资助金额:
$ 14.49万 - 项目类别:
Discovery Grants Program - Individual
Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
- 批准号:
22K03267 - 财政年份:2022
- 资助金额:
$ 14.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zero distribution of Dirichlet L-functions
狄利克雷 L 函数的零分布
- 批准号:
21K03204 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value distribution of L-functions in the critical strip
临界带中 L 函数的值分布
- 批准号:
565498-2021 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
- 批准号:
RGPIN-2021-02952 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Discovery Grants Program - Individual
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2211929 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant
Distribution of Roots of Random Functions
随机函数的根的分布
- 批准号:
2125031 - 财政年份:2021
- 资助金额:
$ 14.49万 - 项目类别:
Standard Grant