Prime Characteristic Rings, Birational Morphisms, and Valuations
素特征环、双有理态射和估值
基本信息
- 批准号:2101890
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Commutative algebra is the local theory of algebraic geometry, and algebraic geometry is the study of geometric objects defined by polynomial equations. The study of algebraic geometry stems from Descartes’ introduction of the coordinate plane to better understand the geometry of objects defined by polynomial equations. For example, the polynomial equation y=x^2 defines a parabola in the coordinate plane and the polynomial equation x^2+y^2=1 defines a circle. In contrast, the graph of the equation y^2 = x^3 has a sharp point, a type of singularity. Geometric objects defined by polynomial equations may admit singularities. The local study of these singularities is a necessity to understanding the geometry of the object. The main research goals of this project concern itself with the study of singularities when the defining equations have coefficients in a positive characteristic numbering system. Singularities of prime characteristic rings are studied, classified, and understood through descriptive behavior of the Frobenius endomorphism. This project focuses on the study of F-pure and F-regular singularities, numerical invariants designed to relate rings among these singularity classes, and test ideals. A particular emphasis is to determine sufficient conditions that imply equality of the finitistic and big test ideal of a local F-pure ring. The purpose of doing so is to investigate the weak-implies-strong conjecture from tight closure theory, to establish unifying behavior of F-regular rings, and to relate the numerical invariant F-signature with the behavior of valuation rings centered over an F-regular ring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
交换代数是代数几何的局部理论,而代数几何是研究由多项式方程定义的几何对象。代数几何的研究起源于笛卡尔为了更好地理解由多项式方程定义的物体的几何而引入的坐标平面。例如,多项式方程y=x^2定义了坐标平面中的抛物线,多项式方程x^2+y^2=1定义了圆。相比之下,方程y^2 = x^3的图形有一个尖锐的点,这是一种奇点。由多项式方程定义的几何对象可以有奇点。对这些奇点的局部研究是理解物体几何的必要条件。该项目的主要研究目标是研究当定义方程具有正特征编号系统中的系数时的奇异性。 通过Frobenius自同态的描述性行为,对素特征环的奇异性进行了研究、分类和理解。这个项目的重点是研究F-纯和F-正则奇异性,数值不变量,旨在将这些奇异类之间的环,和测试理想。特别强调的是,确定充分条件,意味着平等的有限性和大测试理想的局部F-纯环。这样做的目的是调查弱蕴涵强猜想从紧闭包理论,建立统一的行为的F-正则环,并与数值不变的F-签名与行为的估值环中心的F-正则环。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global F-splitting ratio of modules
模块全局F分光比
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:De Stefani, Alessandro Yao
- 通讯作者:De Stefani, Alessandro Yao
Compatible ideals in ℚ-Gorenstein rings
α-Gorenstein 环中的相容理想
- DOI:10.1090/proc/16331
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Polstra, Thomas;Schwede, Karl
- 通讯作者:Schwede, Karl
On the equality of test ideals
- DOI:10.1016/j.aim.2024.109559
- 发表时间:2024-04
- 期刊:
- 影响因子:1.7
- 作者:Ian M. Aberbach;Craig Huneke;Thomas Polstra
- 通讯作者:Ian M. Aberbach;Craig Huneke;Thomas Polstra
Local cohomology bounds and the weak implies strong conjecture in dimension 4
- DOI:10.1016/j.jalgebra.2022.04.020
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Ian M. Aberbach;Thomas Polstra
- 通讯作者:Ian M. Aberbach;Thomas Polstra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ken Ono其他文献
Distribution of hooks in self-conjugate partitions
自共轭分区中钩子的分布
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
William Craig;Ken Ono;Ajit Singh - 通讯作者:
Ajit Singh
Hasse invariants for the Clausen elliptic curves
- DOI:
10.1007/s11139-011-9342-x - 发表时间:
2012-06-13 - 期刊:
- 影响因子:0.700
- 作者:
Ahmad El-Guindy;Ken Ono - 通讯作者:
Ken Ono
Weierstrass points on X 0 (p) and supersingular j-invariants
- DOI:
10.1007/s00208-002-0390-9 - 发表时间:
2003-02-01 - 期刊:
- 影响因子:1.400
- 作者:
Scott Ahlgren;Ken Ono - 通讯作者:
Ken Ono
Pentagonal number recurrence relations for emp/em(emn/em)
五角数递归关系对于 emp/em(emn/em)
- DOI:
10.1016/j.aim.2025.110308 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Kevin Gomez;Ken Ono;Hasan Saad;Ajit Singh - 通讯作者:
Ajit Singh
Multiquadratic fields generated by characters of <em>A</em><sub><em>n</em></sub>
- DOI:
10.1016/j.jalgebra.2019.05.030 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Madeline Locus Dawsey;Ken Ono;Ian Wagner - 通讯作者:
Ian Wagner
Ken Ono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ken Ono', 18)}}的其他基金
REU Site: Arithmetic Geometry, Number Theory, and Representation Theory at the University of Virginia
REU 网站:弗吉尼亚大学算术几何、数论和表示论
- 批准号:
2147273 - 财政年份:2022
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Harmonic Maass Forms, "Moonshine," and Arithmetic Statistics
谐波马斯形式、“Moonshine”和算术统计
- 批准号:
2055118 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
REU Site: Algebra and Number Theory at Emory University
REU 网站:埃默里大学代数与数论
- 批准号:
1849959 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
REU Site: Algebra and Number Theory at Emory University
REU 网站:埃默里大学代数与数论
- 批准号:
2002265 - 财政年份:2019
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
REU Site: Arithmetic Geometry and Number Theory at Emory University
REU 网站:埃默里大学算术几何与数论
- 批准号:
1557960 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Maass Forms in Algebra, Arithmetic Geometry, Combinatorics, Representation Theory, and String Theory
代数、算术几何、组合学、表示论和弦理论中的马斯形式
- 批准号:
1601306 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
REU Site: Number Theory at Emory University
REU 站点:埃默里大学数论
- 批准号:
1250467 - 财政年份:2013
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
REU Site: Number Theory at the University of Wisconsin
REU 站点:威斯康星大学数论
- 批准号:
1208347 - 财政年份:2011
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
How do early-life infectious and nutritional exposures characteristic of tropical Africa impact subsequent cardiovascular disease risk?
热带非洲特征的早期感染和营养暴露如何影响随后的心血管疾病风险?
- 批准号:
MR/Y013948/1 - 财政年份:2024
- 资助金额:
$ 10.5万 - 项目类别:
Research Grant
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
- 批准号:
2302072 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Pathophysiology based on genomic and epigenomic abnormalities characteristic of thymic carcinoma
基于胸腺癌基因组和表观基因组异常特征的病理生理学
- 批准号:
23K19534 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
- 批准号:
23KK0087 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Research on clinical characteristic of delayed sleep-wake phase disorder without delayed melatonin rhythm
不伴褪黑素节律延迟的睡眠觉醒时相延迟障碍的临床特征研究
- 批准号:
23K14808 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Organic heterojunction transistor for characteristic electrical property and its application to novel logic circuits
有机异质结晶体管的电特性及其在新型逻辑电路中的应用
- 批准号:
23H00269 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Birational geometry in positive characteristic
正特性的双有理几何
- 批准号:
23K03028 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characteristic modulation process of oxide devices visualized by nondestructive operando nano imaging
通过无损操作纳米成像可视化氧化物器件的特征调制过程
- 批准号:
23K13363 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Empirical study on the evasion method of characteristic biases in social science data collection by Web survey
网络调查社会科学数据采集特征偏差规避方法实证研究
- 批准号:
23K17576 - 财政年份:2023
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)