I-Corps: A machine learning and video-based sensor for measuring sewer flows

I-Corps:一种基于机器学习和视频的传感器,用于测量下水道流量

基本信息

  • 批准号:
    2101934
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is in the improvement of water reclamation operations and associated positive impacts on human and environmental health. Water reclamation facilities in the U.S. discharge billions of gallons of untreated wastewater into the environment each year due to large storms that cause overflows in their collection systems. Failures in these systems can also result in basement backups of untreated water into citizens' homes, which can cause property damage and risk of serious illnesses. To overcome these challenges, water reclamation facilities rely on sewer flow data to get a picture of what is happening within their pipe networks; however, existing sensors have several shortcomings including inaccurate data, high costs, and an inability to detect low flows. The proposed technology seeks to overcome these challenges through a machine learning and video-based sensor for measuring sewer flows and water quality. This technology has the potential to provide water reclamation facilities with accurate and reliable data across all pipe flow conditions to inform decision-making on costly infrastructure and operations. In addition, by helping to reduce basement backups, this technology has broader social implications as low-income and minority communities are disproportionately affected by flood impacts.This I-Corps project is based on the development of a low-cost, video-based sensor to measure flows in sanitary sewer systems using machine learning and spectral analysis. Specifically, the proposed technology captures video of sewer flow and processes using a machine learning algorithm to estimate velocity and water level. In addition, it uses spectral analysis to determine the clarity and color of water that can be used to identify sources of pollutants within the sanitary sewer system. This technology is novel in that for the first-time a video-based sensor is applied to accurately measure flow and water quality in sanitary sewers. The proposed technology has the potential to advance water reclamation operations through less expensive, more reliable, and more accurate data on the magnitude and quality of water flow in sanitary sewers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
I-Corps项目的更广泛影响/商业潜力在于改善水回收作业,并对人类和环境健康产生相关的积极影响。美国的水回收设施每年向环境中排放数十亿加仑未经处理的废水,原因是大风暴导致其收集系统溢流。这些系统的故障还可能导致未经处理的水从地下室流入市民家中,这可能造成财产损失和严重疾病的风险。为了克服这些挑战,水回收设施依靠下水道流量数据来了解管网内发生的情况;然而,现有的传感器存在一些缺点,包括数据不准确、成本高、无法检测低流量。提出的技术旨在通过机器学习和基于视频的传感器来测量下水道流量和水质,从而克服这些挑战。该技术有可能为水回收设施提供准确可靠的数据,涵盖所有管道流动条件,为昂贵的基础设施和运营决策提供信息。此外,通过帮助减少地下室的备份,这项技术具有更广泛的社会意义,因为低收入和少数民族社区受到洪水影响的影响不成比例。I-Corps项目的基础是开发一种低成本、基于视频的传感器,利用机器学习和光谱分析来测量卫生下水道系统的流量。具体来说,该技术使用机器学习算法捕获下水道流量和过程的视频,以估计流速和水位。此外,它使用光谱分析来确定水的清晰度和颜色,可用于识别卫生下水道系统内污染物的来源。这项技术的新颖之处在于,它首次应用基于视频的传感器来精确测量卫生下水道的流量和水质。拟议的技术有可能通过更便宜、更可靠和更准确的卫生下水道水流大小和质量数据来推进水回收作业。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Walter McDonald其他文献

End-of-pipe filter to reduce phosphorus concentrations from the effluent of green infrastructure underdrains
末端管道过滤器,用于降低绿色基础设施排水管道流出物中的磷浓度
  • DOI:
    10.1016/j.jenvman.2025.124131
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Benjamin Bodus;Walter McDonald
  • 通讯作者:
    Walter McDonald
Hydrologic and water quality performance of a subsurface gravel wetland treating stormwater runoff
用于处理雨水径流的地下砾石湿地的水文和水质性能
  • DOI:
    10.1016/j.jenvman.2022.116120
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Catherine Sullivan;Walter McDonald
  • 通讯作者:
    Walter McDonald
Integrated tire wear buildup and rainfall-runoff model to simulate tire wear particles in stormwater.
集成的轮胎磨损累积和降雨径流模型可模拟雨水中的轮胎磨损颗粒。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Matthew Dupasquier;Jaime Hernandez;Alondra Gonzalez;Cesar Aguirre;Walter McDonald
  • 通讯作者:
    Walter McDonald
The influence of socioeconomic and spatial variables on total maximum daily load progress in the United States
社会经济和空间变量对美国最大日总负荷进展的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Charitha Gunawardana;Walter McDonald
  • 通讯作者:
    Walter McDonald
Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature
绿色雨水基础设施中新兴污染物综述:抗生素抗性基因、微塑料、轮胎磨损颗粒、全氟烷基物质和温度
  • DOI:
    10.1016/j.scitotenv.2023.167195
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Benjamin Bodus;Kassidy O'Malley;Greg Dieter;Charitha Gunawardana;Walter McDonald
  • 通讯作者:
    Walter McDonald

Walter McDonald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Machine Learning Risk Stratification Tool for Venous Thromboembolism
I-Corps:机器学习风险分层工具对静脉血栓栓塞的转化潜力
  • 批准号:
    2420417
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning-Based Burn Injury Diagnosis and Care
I-Corps:基于机器学习的烧伤诊断和护理
  • 批准号:
    2326781
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A Machine Learning Tool for Medical Device History and Recalls
I-Corps:用于医疗器械历史和召回的机器学习工具
  • 批准号:
    2334058
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning Algorithm for Cardiovascular Disease Diagnosis
I-Corps:用于心血管疾病诊断的机器学习算法
  • 批准号:
    2331156
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A machine learning model based on neural networks trained to recognize correlations and patterns that indicates possible medical complications
I-Corps:基于神经网络的机器学习模型,经过训练可以识别指示可能的医疗并发症的相关性和模式
  • 批准号:
    2321426
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning and Bio-Signal Processing for Enhancing Empathy Training
I-Corps:用于增强同理心训练的机器学习和生物信号处理
  • 批准号:
    2237325
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Machine Learning Enhanced Automated Circuit Configuration and Evaluation of Power Converters
I-Corps:机器学习增强电源转换器的自动化电路配置和评估
  • 批准号:
    2245187
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
  • 批准号:
    2224299
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Automated Pavement Evaluation Using Advanced Machine Learning
I-Corps:使用先进机器学习自动路面评估
  • 批准号:
    2229743
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了