An integrated framework for condition monitoring and fault diagnosis of electric machine drive systems
电机驱动系统状态监测和故障诊断的集成框架
基本信息
- 批准号:2102032
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to design and demonstrate an innovative physics-guided signature-based approach for condition monitoring and fault diagnosis (CMFD) of electric machine networks. As the number of electric machines grows rapidly in response to less carbon dioxide emissions, a large number of electric machines are connected to form electric machine networks. However, traditional CMFD were developed based on individual machine sensors, which requires a large number of sensors and do not comprehensively consider fault and degradation propagation. This limitation will be in part resolved by coordinated monitoring and analysis of strategically-placed electrical waveform sensors in power networks. The intellectual merits of the project include integrating high-fidelity physical model of electric machine networks to signature-based CMFD for improved accuracy and robustness. The broader impacts of the project include advancing the research experiences for K-12 and undergraduate students including underrepresented students. The research will be integrated into the undergraduate and graduate electric power engineering curriculum to educate future engineers who will have the skills and knowledge to meet the emerging needs of the industry. The proposed physics-guided signature-based approach for condition monitoring and fault diagnosis (CMFD) of electric machine networks will advance the literature in a new direction compared to the traditional approach based on individual machine sensors. Four specific objectives will be pursued: (1) Assess the electrical waveform signature due to faults and degradation that will build a technical foundation for the proposed CMFD approach. (2) Create a high-fidelity physical model of electric machine networks that reflects not only the fault, degradation and nonlinearity of the machine, but also waveform propagation due to faults and degradation. (3) Design a physics-guided signature-based method that leverages the waveform propagation model to more effectively and efficiently identify and locate faults or degradation source in electric machine networks. (4) Build a semi-virtual testbed of electric machine networks to evaluate the performance of the proposed CMFD approach. The proposed CMFD approach can be generally used in a variety of applications, including manufacturing and industrial systems, smart buildings, wind farms, and electrified transportation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF项目旨在设计和展示一种创新的基于物理指导的基于特征的方法,用于电机网络的状态监测和故障诊断(CMFD)。随着二氧化碳排放量的减少,电机的数量迅速增长,大量的电机被连接起来形成电机网络。然而,传统的CMFD是基于单个机器传感器开发的,这需要大量的传感器,并且没有全面考虑故障和退化传播。这一限制将在一定程度上通过协调监测和分析电网中战略性放置的电波形传感器来解决。该项目的智力优势包括将电机网络的高保真物理模型集成到基于签名的CMFD中,以提高准确性和鲁棒性。该项目的更广泛的影响包括推进K-12和本科生的研究经验,包括代表性不足的学生。该研究将整合到电力工程本科和研究生课程中,以培养未来的工程师,使他们具备满足行业新需求的技能和知识。与基于单个机器传感器的传统方法相比,提出的基于物理指导的基于特征的电机网络状态监测和故障诊断(CMFD)方法将把文献推向一个新的方向。将追求四个具体目标:(1)评估由于故障和退化导致的电波形特征,这将为拟议的CMFD方法建立技术基础。(2)创建电机网络的高保真物理模型,该模型不仅反映了电机的故障、退化和非线性,而且反映了由于故障和退化引起的波形传播。(3)设计一种基于物理引导特征的方法,利用波形传播模型更有效地识别和定位电机网络中的故障或退化源。(4)建立电机网络的半虚拟试验台,以评估所提出的CMFD方法的性能。提出的CMFD方法通常可用于各种应用,包括制造和工业系统、智能建筑、风力发电场和电气化运输。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised Anomaly Detection and Diagnosis in Power Electronic Networks: Informative Leverage and Multivariate Functional Clustering Approaches
电力电子网络中的无监督异常检测和诊断:信息杠杆和多元功能聚类方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:9.6
- 作者:Wu, Shushan;Fang, Luyang;JZhang, Jinan;Sriram, T.N.;Coshatt, Stephen;Zahiri, Feraidoon;Mantooth, Alan;Ye, Jin;Zhong, Wenxuan;Ma, Ping
- 通讯作者:Ma, Ping
A Four-layer Cyber-physical Security Model for Electric Machine Drives considering Control Information Flow
考虑控制信息流的电机驱动四层信息物理安全模型
- DOI:10.1109/jestpe.2024.3366089
- 发表时间:2024
- 期刊:
- 影响因子:5.5
- 作者:Yang, Bowen;Yang, He;Ye, Jin
- 通讯作者:Ye, Jin
Fault and Attack Detection and Diagnosis by Analysis of Electrical Waveforms of Power Networks
- DOI:10.1109/aero53065.2022.9843462
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:S. Coshatt;Bowen Yang;Jin Ye;Wenzhan Song;F. Zahiri;James Hill
- 通讯作者:S. Coshatt;Bowen Yang;Jin Ye;Wenzhan Song;F. Zahiri;James Hill
Fast Detection for Cyber Threats in Electric Vehicle Traction Motor Drives
- DOI:10.1109/tte.2021.3102452
- 发表时间:2021-08
- 期刊:
- 影响因子:7
- 作者:Bowen Yang;Jin Ye;Lulu Guo
- 通讯作者:Bowen Yang;Jin Ye;Lulu Guo
Adaptive Hierarchical Cyber Attack Detection and Localization in Active Distribution Systems
- DOI:10.1109/tsg.2022.3148233
- 发表时间:2022-05
- 期刊:
- 影响因子:9.6
- 作者:Qi Li;Jinan Zhang;Junbo Zhao;Jin Ye;Wenzhan Song;Fangyu Li
- 通讯作者:Qi Li;Jinan Zhang;Junbo Zhao;Jin Ye;Wenzhan Song;Fangyu Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin Ye其他文献
A Loss Differentiation Algorithm Based on ECN and Its Emulation in Linux
一种基于ECN的损耗微分算法及其在Linux下的仿真
- DOI:
10.1109/wicom.2009.5302763 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jin Ye;Jianxin Wang;Y. Yuan;Jiawei Huang - 通讯作者:
Jiawei Huang
Effect of feeding flaxseed on meat flavor quality of Sunit lambs.
- DOI:
10.11975/j.issn.1002-6819.2019.21.037 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
Liu Chang;Luo Yulong;Jin Ye - 通讯作者:
Jin Ye
Distribution System Flexibility Characterization: A Network-Informed Data-Driven Approach
配电系统灵活性表征:网络知情的数据驱动方法
- DOI:
10.1109/tsg.2023.3328159 - 发表时间:
2023 - 期刊:
- 影响因子:9.6
- 作者:
Qi Li;Jianzhe Liu;Bai Cui;Wenzhan Song;Jin Ye - 通讯作者:
Jin Ye
Predictive models for assessing the risk of Fusarium pseudograminearum mycotoxin contamination in post-harvest wheat with multi-parameter integrated sensors.
- DOI:
10.1016/j.fochx.2022.100472 - 发表时间:
2022-12-30 - 期刊:
- 影响因子:6.1
- 作者:
Hua Cui;Songshan Wang;Xu Yang;Wei Zhang;Mengze Chen;Yu Wu;Sen Li;Li Li;Di Cai;Baoyuan Guo;Jin Ye;Songxue Wang - 通讯作者:
Songxue Wang
Fine-Grained Congestion Control for Multipath TCP in Data Center Networks
数据中心网络中多路径 TCP 的细粒度拥塞控制
- DOI:
10.1109/access.2019.2902860 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Jin Ye;Luting Feng;Ziqi Xie;Jiawei Huang;Xiaohuan Li - 通讯作者:
Xiaohuan Li
Jin Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin Ye', 18)}}的其他基金
MRI: Acquisition of a Power-Hardware-in-the-Loop (PHIL) System to Enhance Research and Student Research Training in Engineering and Computer Science
MRI:采购动力硬件在环 (PHIL) 系统以加强工程和计算机科学领域的研究和学生研究培训
- 批准号:
1946057 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-Torque-Ripple Sensorless Control of Mutually Coupled Switched Reluctance Machines (MCSRMs)
互耦开关磁阻电机 (MCSRM) 的低扭矩纹波无传感器控制
- 批准号:
1851875 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Low-Torque-Ripple Sensorless Control of Mutually Coupled Switched Reluctance Machines (MCSRMs)
互耦开关磁阻电机 (MCSRM) 的低扭矩纹波无传感器控制
- 批准号:
1703641 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MRI: Acquisition of a Power-Hardware-in-the-Loop (PHIL) System to Enhance Research and Student Research Training in Engineering and Computer Science
MRI:采购动力硬件在环 (PHIL) 系统以加强工程和计算机科学领域的研究和学生研究培训
- 批准号:
1725636 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似海外基金
Chicago Chronic Condition Equity Network (C3EN)
芝加哥慢性病股票网络 (C3EN)
- 批准号:
10892590 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Implementing the Provincial Post COVID-19 Rehabilitation Framework for Screening & Transitions in Alberta: A Pragmatic Evaluation
实施省级 COVID-19 后筛查康复框架
- 批准号:
448917 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Operating Grants
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Center for Quantitative Biology: A focus on "omics", from organisms to single cells Supplement 1
定量生物学中心:关注“组学”,从有机体到单细胞补充1
- 批准号:
10853913 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
- 批准号:
RGPIN-2017-04143 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Technology-Based Condition Assessment Framework for Railway Infrastructure
基于技术的铁路基础设施状况评估框架
- 批准号:
522776-2017 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Engage Grants Program