Opioid Drug Ontology (ODO)
阿片类药物本体论 (ODO)
基本信息
- 批准号:10228543
- 负责人:
- 金额:$ 19.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute PainAnalgesicsAnatomyAnimalsBehavioralBindingBiochemicalBiologicalBrainCessation of lifeCharacteristicsChemical StructureClinicalCommunitiesComplexCrystallizationDataData SourcesData StoreDatabasesDependenceDevelopmentDrug DesignDrug PrescriptionsDrug Side EffectsEffectivenessElderlyFAIR principlesFailureG-Protein-Coupled ReceptorsGene ExpressionGeneticGenomeGoalsGoldHumanHybridsIn VitroKnowledgeKnowledge DiscoveryLibrariesLigandsLinkMachine LearningMapsMethodsModelingMolecularMolecular ConformationMutagenesisNarcoticsNetwork-basedNeuropharmacologyOntologyOpioidOpioid AnalgesicsOpioid ReceptorOpioid Receptor BindingOverdosePainPharmaceutical PreparationsPharmacologyPhenotypePhysical DependencePopulationProcessProgram DevelopmentPublicationsReceptor SignalingReportingResearchResearch PersonnelResolutionRiskScientistSemanticsSignal PathwaySignal TransductionStructureSystemTissuesTranslational ResearchUnited StatesVentilatory DepressionWorkaddictionbasechronic painchronic painful conditionclinical paincloud basedcomputer frameworkcomputerized data processingdata analysis pipelinedata harmonizationdata portaldata standardsdesigndiverse datadrug developmentdrug discoveryexperimental studyheuristicsimprovedin vivojournal articleknowledge basemedical attentionmetadata standardsmu opioid receptorsnovelnovel therapeuticsopioid epidemicopioid mortalityopioid overdoseoverdose deathpredictive modelingprescription opioidprogramsreceptorresponsescaffoldscreeningsearch engineside effectsimulationsmall moleculesoftware developmentsoftware systemssuccesstool
项目摘要
PROJECT SUMMARY
Analgesics are among the most commonly prescribed medications, and opioid painkillers are the gold standard
for the management of severe acute pain, and for many chronic pain conditions. More than 30% of the U.S.
population suffers from chronic pain, and nearly 40% of older adults report debilitating chronic pain conditions
not caused by cancer. However, side effects of opioids, including tolerance, physical dependence, and
respiratory depression have limited their effectiveness as pain killers. Rates of addiction and opioid overdose
have escalated to a point of crisis. In the United States, on average approximately 115 people die every day
from accidental overdose. Better, efficacious and safe opioid analgesic drugs with reduced risk of use are
urgently needed.
We propose to develop the Opioid Drug Ontology (ODO) – an integrated knowledgebase aimed at accelerating
and improving the success of translational research and drug discovery programs towards the identification of
efficacious and save opioid drugs. ODO will enable multi-tiered analyses across diverse data types and
hypothesis development for example by connecting chemical structure, biochemical binding profiles,
pharmacological responses in animals and drug side effects and thus enable more effective rational drug
discovery programs.
To develop ODO we will leverage our extensive previous work in several research consortia developing formal
ontologies, data standards, processing and integration methods, and software systems to enable integrated
access, query and analysis of large scale and diverse data types.
The current proposal aims to demonstrate the feasibility of the ODO integrated knowledgebase and illustrate
proof of concept via two Specific Aims: (1) to curate and harmonize ODO content from diverse data sources
via a semantic knowledge model enabling integration of diverse data types, and (2) to deploy the ODO
integrated Data Portal and Search Engine engaging the community and demonstrate its heuristic value.
We envision that the ODO will pave the way to enable advanced machine learning and link results from
molecular simulations with opioid analgesic drug pharmacology and functional selectivity, thus facilitating, at
larger scale, the rational, predictive design, and scaffold optimization in drug development efforts towards
identifying safer opioid analgesics.
项目摘要
止痛药是最常用的处方药之一,阿片类止痛药是黄金标准
用于严重急性疼痛和许多慢性疼痛状况的管理。超过30%的美国
人口患有慢性疼痛,近40%的老年人报告了使人衰弱的慢性疼痛状况
不是癌症引起的然而,阿片类药物的副作用,包括耐受性,身体依赖性,
呼吸抑制限制了它们作为止痛药的有效性。成瘾率和阿片类药物过量
已经升级到了危机点在美国,平均每天约有115人死亡
意外用药过量更好,有效和安全的阿片类镇痛药,使用风险降低,
迫切需要。
我们建议开发阿片类药物本体(ODO)-一个旨在加速
提高转化研究和药物发现计划的成功率,
有效和节省阿片类药物。ODO将支持跨不同数据类型的多层分析,
假设发展,例如通过连接化学结构,生物化学结合概况,
动物的药理学反应和药物副作用,从而使更有效的合理药物
探索计划
为了开发ODO,我们将利用我们以前在几个研究联盟中的广泛工作,
本体、数据标准、处理和集成方法以及软件系统,
大规模、多样化数据类型的访问、查询和分析。
目前的建议旨在证明ODO集成知识库的可行性,并说明
通过两个特定目标进行概念验证:(1)管理和协调来自不同数据源的ODO内容
通过语义知识模型实现不同数据类型的集成,以及(2)部署ODO
整合的数据门户和搜索引擎吸引社区,并展示其启发式价值。
我们设想,ODO将为实现先进的机器学习和链接结果铺平道路。
阿片类镇痛药物药理学和功能选择性的分子模拟,从而促进,
更大规模的,合理的,预测性的设计,和支架优化在药物开发的努力,
确定更安全的阿片类镇痛药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan C Schurer其他文献
Stephan C Schurer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan C Schurer', 18)}}的其他基金
Elucidating the Understudied Kinase PNCK as a Prospective Drug Target in Renal Cell Carcinoma
阐明正在研究的激酶 PNCK 作为肾细胞癌的潜在药物靶点
- 批准号:
10667043 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8463321 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8677231 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8463320 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8336887 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8231072 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
LINCS Information FramEwork (LIFE) to Integrate and Analyze Diverse Data Set
用于集成和分析不同数据集的 LINCS 信息框架 (LIFE)
- 批准号:
8711728 - 财政年份:2011
- 资助金额:
$ 19.19万 - 项目类别:
相似海外基金
Planning Study for the Development of Sigma 2 ligands as Analgesics
Sigma 2 配体镇痛药开发规划研究
- 批准号:
10641500 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Designing and validating optimal nonaddictive analgesics using the CANDO paradigm
使用 CANDO 范式设计和验证最佳的非成瘾性镇痛药
- 批准号:
10485593 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Identification of botanical hHv1 channel blockers as analgesics for neuropathic pain
植物 hHv1 通道阻滞剂作为神经性疼痛镇痛药的鉴定
- 批准号:
10728526 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Development of LPA5 Antagonists as Analgesics
LPA5 拮抗剂镇痛药的开发
- 批准号:
10638278 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Designed Multiple Ligands as Non-opioid Analgesics for Treating Chronic Pain
设计多种配体作为非阿片类镇痛药,用于治疗慢性疼痛
- 批准号:
10621646 - 财政年份:2023
- 资助金额:
$ 19.19万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10425794 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Elucidation of the mechanism of pain suppression by exercise and development of new analgesics
阐明运动镇痛机制及开发新型镇痛药
- 批准号:
22K19602 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics
大麻素 CB1 受体变构靶向开发非成瘾性小分子镇痛药
- 批准号:
10512672 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10721752 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
A novel clinically-relevant mouse model of chronic overlapping pain conditions for screening analgesics
用于筛选镇痛药的新型临床相关慢性重叠疼痛小鼠模型
- 批准号:
10821681 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别: