Modeling electrocatalysts in operating conditions: Surface restructuring and catalytic activity

模拟运行条件下的电催化剂:表面重组和催化活性

基本信息

  • 批准号:
    2103116
  • 负责人:
  • 金额:
    $ 50.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Electrochemistry is slated to play a large role in clean energy, chemical manufacturing, and environmental processes in coming years, as renewable electricity becomes increasingly available from sources such as wind and solar energy. The project focuses on two electrochemical reactions, the hydrogen evolution reaction (HER) to produce hydrogen from water, and the carbon dioxide reduction reaction (CO2RR) to convert CO2 to higher-value products. Both reactions are facilitated by catalysts. Copper-based catalysts are amongst the most active identified to date, but as with many electrocatalysts, their chemical structure changes under reaction conditions. The project focuses on understanding the reconstruction process with the goal of designing more active, selective, and stable catalysts. Specifically, the project develops and employs computational techniques to predict structural changes in response to key electrochemical process variables. Beyond the technical aspects, the project incorporates a training program for high-school teachers that brings the topics of sustainability and energy to their classrooms, while introducing students to the rapidly emerging area of molecular modeling. The project will determine, by unique first-principles, multi-scale stochastic theoretical simulations, how the surface of copper-based electrocatalysts used for the hydrogen evolution and CO2 electroreduction reactions restructures in realistic conditions of potential, solvent, and electrolyte. The influence of the potential-induced reconstruction on the electrocatalytic mechanism, activity, and selectivity of these reactions will be studied, in link with experiments. There is evidence from in-situ characterization that the surface structure of electrocatalysts is strongly modified in operational conditions. However, it is not yet possible to determine the atomic structure of the active surface, and thus, the implications of these reconstructions on the mechanisms are unknown. The proposed multiscale first-principle simulations appear to be the most adequate approach to elucidate the interface structure. Principally, new reaction mechanisms may emerge. The selectivity of CO2 electroreduction versus hydrogen evolution (the latter being a major hurdle in applications) will be studied. Several theoretical methods unique to the laboratories of the PIs, including the incorporation of electrochemical potential, solvent effects, global optimization algorithms, and STM image simulations, will be advanced, adapted, and merged to make this research possible. Close connection to the experiment is proposed, both for structural aspects, with operando scanning tunneling microscopy (STM), and to validate the predicted kinetics and selectivity. This project will educate young researchers in techniques of modern surface chemistry and catalysis, including realistic modeling, method development, quantum mechanics, and statistical mechanics. In addition, students will learn how to connect modeling efforts to experimental data and capabilities. The training will promote a highly-skilled workforce to address global challenges in the manufacture of sustainable fuels and chemicals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着可再生电力越来越多地来自风能和太阳能等来源,电化学在未来几年将在清洁能源、化学制造和环境过程中发挥重要作用。该项目专注于两个电化学反应,即从水中生产氢气的析氢反应(HER)和将二氧化碳转化为更高价值产品的二氧化碳还原反应(CO2RR)。这两个反应都是在催化剂的推动下进行的。铜基催化剂是迄今发现的活性最高的催化剂之一,但与许多电催化剂一样,它们的化学结构在反应条件下会发生变化。该项目的重点是了解重建过程,目标是设计更活跃、更有选择性和更稳定的催化剂。具体地说,该项目开发并使用计算技术来预测结构变化,以响应关键的电化学过程变量。除了技术方面,该项目还包括一个针对高中教师的培训计划,将可持续发展和能源的主题带到他们的课堂上,同时向学生介绍迅速崛起的分子建模领域。该项目将通过独特的第一原理、多尺度随机理论模拟,确定用于析氢和CO2电还原反应的铜基电催化剂在真实的电位、溶剂和电解液条件下的表面重构。我们将结合实验研究电势诱导重构对这些反应的电催化机理、活性和选择性的影响。现场表征表明,在操作条件下,电催化剂的表面结构发生了强烈的修饰。然而,目前还不可能确定活性表面的原子结构,因此,这些重建对机制的影响尚不清楚。所提出的多尺度第一原理模拟似乎是解释界面结构的最合适的方法。大体上,可能会出现新的反应机制。将研究二氧化碳电还原与析氢的选择性(后者是应用中的主要障碍)。PI实验室独有的几种理论方法,包括电化学势、溶剂效应、全局优化算法和STM图像模拟,将被改进、调整和合并,以使这项研究成为可能。提出了与实验密切相关的建议,无论是在结构方面,还是为了验证预测的动力学和选择性,都使用了操作手扫描隧道显微镜(STM)。这个项目将教育年轻的研究人员现代表面化学和催化技术,包括逼真的建模、方法开发、量子力学和统计力学。此外,学生还将学习如何将建模工作与实验数据和能力联系起来。该培训将促进一支高技能的劳动力队伍,以应对可持续燃料和化学品制造方面的全球挑战。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogen-Induced Restructuring of a Cu(100) Electrode in Electroreduction Conditions
电还原条件下 Cu(100) 电极的氢致重构
  • DOI:
    10.1021/jacs.2c06188
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Zhang, Zisheng;Wei, Ziyang;Sautet, Philippe;Alexandrova, Anastassia N.
  • 通讯作者:
    Alexandrova, Anastassia N.
Restructuring and Activation of Cu(111) under Electrocatalytic Reduction Conditions
  • DOI:
    10.1002/anie.202218575
  • 发表时间:
    2023-04-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cheng, Dongfang;Wei, Ziyang;Sautet, Philippe
  • 通讯作者:
    Sautet, Philippe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Sautet其他文献

On the origin of carbon sources in the electrochemical upgrade of COsub2/sub from carbon capture solutions
关于从碳捕获溶液中电化学升级二氧化碳的碳源起源
  • DOI:
    10.1016/j.joule.2023.05.010
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    35.400
  • 作者:
    Kangze Shen;Dongfang Cheng;Eber Reyes-Lopez;Joonbaek Jang;Philippe Sautet;Carlos G. Morales-Guio
  • 通讯作者:
    Carlos G. Morales-Guio
Key Role of Anionic Doping for H2 Production from Formic Acid onPd(111)
阴离子掺杂在 Pd(111) 上甲酸制氢中的关键作用
  • DOI:
    10.1021/acscatal.6b03544
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Pei Wang;Stephan N. Steinmann;Gang Fu;Carine Michel;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study
  • DOI:
    10.1016/j.cplett.2006.10.123
  • 发表时间:
    2006-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Jan Haubrich;David Loffreda;Françoise Delbecq;Yvette Jugnet;Philippe Sautet;Aleksander Krupski;Conrad Becker;Klaus Wandelt
  • 通讯作者:
    Klaus Wandelt
Structure Sensitivity and Catalyst Restructuring for CO2 Electro-reduction on Copper
铜上二氧化碳电还原的结构敏感性和催化剂重构
  • DOI:
    10.1038/s41467-025-59267-3
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Dongfang Cheng;Khanh-Ly C. Nguyen;Vaidish Sumaria;Ziyang Wei;Zisheng Zhang;Winston Gee;Yichen Li;Carlos G. Morales-Guio;Markus Heyde;Beatriz Roldan Cuenya;Anastassia N. Alexandrova;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li‐ion Batteries
铝掺杂多晶硅作为锂离子电池潜在负极候选物的第一性原理研究
  • DOI:
    10.1002/aenm.202400924
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sree Harsha Bhimineni;Shu;Casey Cornwell;Yantao Xia;Sarah H. Tolbert;Jian Luo;Philippe Sautet
  • 通讯作者:
    Philippe Sautet

Philippe Sautet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Sautet', 18)}}的其他基金

DMREF: Design of fast energy storage pseudocapacitive materials
DMREF:快速储能赝电容材料的设计
  • 批准号:
    2324326
  • 财政年份:
    2023
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
Self-limited etching for atomic scale surface engineering of metals: understanding and design
金属原子级表面工程的自限蚀刻:理解和设计
  • 批准号:
    2212981
  • 财政年份:
    2022
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
Understanding the restructuring of model metal catalysts in reactant gases
了解反应气体中模型金属催化剂的重组
  • 批准号:
    1800601
  • 财政年份:
    2018
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
CAREER: Molecular Electrocatalysts and Reactive Separations for Wastewater Nitrogen Refining
职业:废水氮精炼的分子电催化剂和反应分离
  • 批准号:
    2339308
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Continuing Grant
Designing Multi-Metallic Compound Electrocatalysts for Chemicals Production
设计用于化学品生产的多金属化合物电催化剂
  • 批准号:
    DE240100661
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Development of Self-Healing Electrocatalysts via a Tunable Non-Covalent Design
职业:通过可调谐非共价设计开发自修复电催化剂
  • 批准号:
    2338351
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Continuing Grant
CAREER: Engineering the Reactivity of Single Atom Electrocatalysts Beyond their Active Site
职业:设计单原子电催化剂的活性位点之外的反应性
  • 批准号:
    2340693
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Continuing Grant
Fundamental Insights into the Synthesis and Degradation of Model Fe-N-C Electrocatalysts
Fe-N-C 型电催化剂合成和降解的基本见解
  • 批准号:
    23K20057
  • 财政年份:
    2024
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
  • 批准号:
    2247519
  • 财政年份:
    2023
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design of High Entropy Alloy Electrocatalysts for Mineralization of Total Organic Carbon in Municipal Wastewater
合作研究:城市废水中总有机碳矿化的高熵合金电催化剂设计
  • 批准号:
    2230165
  • 财政年份:
    2023
  • 资助金额:
    $ 50.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了