DMREF: Design of fast energy storage pseudocapacitive materials

DMREF:快速储能赝电容材料的设计

基本信息

  • 批准号:
    2324326
  • 负责人:
  • 金额:
    $ 192.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

Non-technical Description: Electrical energy storage is essential to the energy transition and to the reduction of greenhouse gas emissions. While electricity storage in batteries has made significant progresses in recent years in terms of the amount of energy stored, one major challenge is the long time required for charging. Capacitors represent another class of electrical energy storage devices that can be charged very quickly. Such capacitive energy storage is an important technology for numerous applications where electrical energy needs to be stored and/or released quickly. However, current devices and materials can store only a limited amount of energy. The realization of capacitors that could store a large amount of electrical energy could have an enormous impact on energy storage for the electricity grid, for electric mobility solutions, and for consumer electronics. The project aims at designing novel capacitive materials that can greatly increase the energy storage of electrochemical capacitors with fast charging and discharging. The project’s societal impact lies in its contributions towards the decarbonization of the transportation sector which accounts for 29% of all greenhouse gas emission in the United States today. The scientific approach will be based on a material design loop including experiments and modeling in order to define the features of capacitive materials enabling high storage ability, in the spirit of the Materials Genome initiative and on a large computational screening of prospective materials to obtain candidates that will be tested experimentally. The project will also serve as a platform for the training of undergraduate and graduate students in topics related to energy storage and modeling. Advantage will be taken of the existing infrastructure at UCLA and Stanford University to attract talented, ethnically and culturally diverse undergraduate student populations to work on cutting-edge research. Technical Description: The aim of this research program is to tightly combine experimental and computational methods to identify a new generation of electrochemical energy storage materials based on pseudocapacitance, defined as a charge storage approach which uses fast and reversible surface or near surface redox reactions, and to construct a prototype device integrating the energy storage materials. While the underlying principles of pseudocapacitance are understood, there is currently no ability to predict or design materials that display pseudocapacitive behavior. A double design loop is proposed. The first one will operate at the atomic scale and will combine first principle electronic structure calculations with synthesis and testing. It will provide thermodynamics and kinetic information to the second level of design that will involve optimization of energy storage device configurations, combining continuum modeling and experimental synthesis and characterization. From this approach, an energy storage device will be demonstrated based on the developed pseudocapacitive materials. The project will bring fundamental understanding of the factors governing pseudocapacitive material performance and provide practical guidelines for the design of high performance energy storage materials and devices. The research will also have significant scientific merit by establishing the interrelationships among material structure, charge storage dynamics, and charge transfer processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述:电能存储对于能源转型和减少温室气体排放至关重要。虽然近年来电池中的电力存储在存储的能量方面取得了重大进展,但一个主要挑战是充电所需的长时间。电容器代表另一类可以非常快速充电的电能存储设备。这种电容性能量存储对于需要快速存储和/或释放电能的许多应用是重要的技术。然而,目前的设备和材料只能存储有限的能量。实现可以存储大量电能的电容器可能会对电网、电动汽车解决方案和消费电子产品的储能产生巨大影响。该项目旨在设计新型电容材料,可以大大增加电化学电容器的能量存储,并实现快速充电和放电。该项目的社会影响在于其对交通部门脱碳的贡献,该部门占美国今天所有温室气体排放的29%。科学方法将基于材料设计循环,包括实验和建模,以定义电容材料的特征,从而实现高存储能力,本着材料基因组计划的精神,并对潜在材料进行大规模计算筛选,以获得将进行实验测试的候选材料。该项目还将作为一个平台,为本科生和研究生提供与储能和建模相关的培训。将利用加州大学洛杉矶分校和斯坦福大学现有的基础设施,吸引有才华、种族和文化多样的本科生从事尖端研究。 技术说明:本研究计划的目的是紧密联合收割机的实验和计算方法,以确定新一代的电化学储能材料的基础上赝电容,定义为电荷存储方法,使用快速和可逆的表面或近表面氧化还原反应,并构建一个原型装置集成的储能材料。虽然理解了赝电容的基本原理,但目前还没有能力预测或设计显示赝电容行为的材料。提出了一种双设计回路。第一个将在原子尺度上运行,并将联合收割机第一原理电子结构计算与合成和测试相结合。它将提供热力学和动力学信息的第二级设计,将涉及优化的能量存储设备的配置,结合连续建模和实验合成和表征。从这种方法,能量存储设备将被证明基于开发的赝电容材料。该项目将带来对赝电容材料性能控制因素的基本理解,并为高性能储能材料和设备的设计提供实用指南。该研究还将通过建立材料结构、电荷存储动力学和电荷转移过程之间的相互关系而具有显著的科学价值。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Sautet其他文献

On the origin of carbon sources in the electrochemical upgrade of COsub2/sub from carbon capture solutions
关于从碳捕获溶液中电化学升级二氧化碳的碳源起源
  • DOI:
    10.1016/j.joule.2023.05.010
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    35.400
  • 作者:
    Kangze Shen;Dongfang Cheng;Eber Reyes-Lopez;Joonbaek Jang;Philippe Sautet;Carlos G. Morales-Guio
  • 通讯作者:
    Carlos G. Morales-Guio
Key Role of Anionic Doping for H2 Production from Formic Acid onPd(111)
阴离子掺杂在 Pd(111) 上甲酸制氢中的关键作用
  • DOI:
    10.1021/acscatal.6b03544
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Pei Wang;Stephan N. Steinmann;Gang Fu;Carine Michel;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study
  • DOI:
    10.1016/j.cplett.2006.10.123
  • 发表时间:
    2006-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Jan Haubrich;David Loffreda;Françoise Delbecq;Yvette Jugnet;Philippe Sautet;Aleksander Krupski;Conrad Becker;Klaus Wandelt
  • 通讯作者:
    Klaus Wandelt
Structure Sensitivity and Catalyst Restructuring for CO2 Electro-reduction on Copper
铜上二氧化碳电还原的结构敏感性和催化剂重构
  • DOI:
    10.1038/s41467-025-59267-3
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Dongfang Cheng;Khanh-Ly C. Nguyen;Vaidish Sumaria;Ziyang Wei;Zisheng Zhang;Winston Gee;Yichen Li;Carlos G. Morales-Guio;Markus Heyde;Beatriz Roldan Cuenya;Anastassia N. Alexandrova;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li‐ion Batteries
铝掺杂多晶硅作为锂离子电池潜在负极候选物的第一性原理研究
  • DOI:
    10.1002/aenm.202400924
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sree Harsha Bhimineni;Shu;Casey Cornwell;Yantao Xia;Sarah H. Tolbert;Jian Luo;Philippe Sautet
  • 通讯作者:
    Philippe Sautet

Philippe Sautet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Sautet', 18)}}的其他基金

CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Self-limited etching for atomic scale surface engineering of metals: understanding and design
金属原子级表面工程的自限蚀刻:理解和设计
  • 批准号:
    2212981
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Modeling electrocatalysts in operating conditions: Surface restructuring and catalytic activity
模拟运行条件下的电催化剂:表面重组和催化活性
  • 批准号:
    2103116
  • 财政年份:
    2021
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant
Understanding the restructuring of model metal catalysts in reactant gases
了解反应气体中模型金属催化剂的重组
  • 批准号:
    1800601
  • 财政年份:
    2018
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Design and synthesis of fast kRISC MR-TADF emitters: merge of cycloparaphenylene materials and B,O doped MR-TADF emitters (CPP-MR-TADF)
快速 kRISC MR-TADF 发射器的设计和合成:环对亚苯基材料和 B,O 掺杂 MR-TADF 发射器的合并 (CPP-MR-TADF)
  • 批准号:
    EP/Y01037X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Fellowship
Design Principles of Solid-state Fast Ion Conductors
固态快离子导体的设计原理
  • 批准号:
    22KF0022
  • 财政年份:
    2023
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10610420
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10420954
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
Communication Design for Fast and Accurate Decentralized Machine Learning over Wireless Networks
通过无线网络实现快速准确的分散式机器学习的通信设计
  • 批准号:
    22K14255
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Fast Analysis and Design of Magnetic Components for Switching Converter Driving at Several 10MHz to 100MHz
10MHz至100MHz开关转换器驱动磁性元件快速分析与设计的开发
  • 批准号:
    22K20435
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
DESIGN AND DEVELOPMENT OF A HIGH-EFFICIENCY WIRELESS FAST CHARGING SYSTEM FOR URBAN MODES OF AUTONOMOUS ELECTRIC MOBILITY AND TRANSPORTATION
城市自动电动出行和交通模式高效无线快速充电系统的设计和开发
  • 批准号:
    RGPIN-2017-05881
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Design for Fast Machine/Statistical Learning
快速机器/统计学习的自适应设计
  • 批准号:
    RGPIN-2019-05019
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Discovery Grants Program - Individual
Exploration of Fast-Rotating Asteroids: Orbit Design and Navigation Guidance
快速旋转小行星的探索:轨道设计和导航制导
  • 批准号:
    22H01687
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of Fast Algorithms using Continuous Methods
使用连续方法设计快速算法
  • 批准号:
    RGPIN-2018-06398
  • 财政年份:
    2022
  • 资助金额:
    $ 192.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了