Sustainable Polymerization Catalysis for Advanced Biorenewable Polymeric Materials

先进生物可再生聚合物材料的可持续聚合催化

基本信息

项目摘要

Project Overview: Polymerization catalysis is the most efficient, economical synthesis technique to convert building block chemicals into polymers, materials essential to virtually all aspects of modern life and the global economy. Most current polymerization processes employed for the synthesis of synthetic polymers utilize predominantly depleting petroleum-based feedstocks as well as rare, expensive, or toxic metal catalysts and/or enviromentally polluting processes, therefore, are unsustainable. The Central Objective of this IUPAC (US-China-Germany) Team project is to develop sustainable polymerization catalysis, through designing earth-abundant, environmentally benign metal and non-toxic organic catalysts as well as highly efficient polymerization systems, to access advanced, novel biorenewable and biodegradable polylactide (PLA) materials.Intellectual Merit: The intellectual merit of the proposed research is threefold. First, the proposed bifunctional chiral organocatalysts, based on naturally occurring or synthetically modified cinchona alkaloids, for kinetic resolution polymerization or enantioselective polymerization of racemic lactide will simultaneously produce chiral poly(L-LA) and optically resolved unnatural (expensive) D-LA, or highly crystalline poly(L-LA)/poly(D-LA) stereocomplex. Second, the development highly efficient immortal polymerization systems enabled by bio-benign metal catalysts and designer chain transfer agents will achieve novel functional and topological PLA materials in a highly efficient, catalytic fashion. Third, molecularly engineered earth-abundant metal complexes with specific functions will promote stereoselective polymerization of lactide leading to highly stereoregular, high-performance PLAs.Broader Impacts:The broader impacts of this research include: (a) discovery and understanding in chemical catalysis and synthesis, polymer chemistry and polymerization mechanism, as well as biomaterials and sustainability; (b) society and environment, as this work is in sustainable catalysis for renewable polymers, materials essential to modern life and the global economy; (c) international collaboration that enables scientists with complementary expertise and facilities required to solve complex problems together; and (d) education of graduate students and postdoctoral researchers with the needed skills to thrive in the global sustainability workplace.
项目概述:聚合催化是最有效、最经济的合成技术,可将结构单元化学品转化为聚合物,聚合物是现代生活和全球经济几乎所有方面所必需的材料。用于合成聚合物的合成的大多数当前聚合方法主要利用耗尽的石油基原料以及稀有、昂贵或有毒的金属催化剂和/或环境污染方法,因此是不可持续的。本项目的核心目标是通过设计地球资源丰富、环境友好的金属和无毒有机催化剂以及高效的聚合体系,开发可持续的聚合催化剂,以获得先进的、新型的可生物再生和可生物降解的聚乳酸(PLA)材料。智力价值:本研究的智力价值有三个方面。首先,所提出的基于天然存在的或合成修饰的金鸡纳生物碱的用于外消旋丙交酯的动力学拆分聚合或对映选择性聚合的双功能手性有机催化剂将同时产生手性聚(L-LA)和光学拆分的非天然(昂贵的)D-LA,或高度结晶的聚(L-LA)/聚(D-LA)立体复合物。其次,由生物良性金属催化剂和设计师链转移剂实现的高效不朽聚合系统的开发将以高效的催化方式实现新型功能和拓扑PLA材料。第三,分子工程的地球丰富的金属配合物具有特定的功能,将促进立体选择性聚合的丙交酯导致高度有规立构,高性能PLA。更广泛的影响:这项研究的更广泛的影响包括:(a)发现和理解化学催化和合成,高分子化学和聚合机理,以及生物材料和可持续性;(B)社会和环境,因为这项工作涉及可再生聚合物的可持续催化作用,这些聚合物是现代生活和全球经济必不可少的材料;(c)国际合作,使科学家能够拥有互补的专门知识和共同解决复杂问题所需的设施;以及(d)教育研究生和博士后研究人员掌握在全球可持续性工作场所茁壮成长所需的技能。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lanthanum complexes containing a bis(phenolate) ligand with a ferrocene-1,1'-diyldithio backbone: synthesis, characterization, and ring-opening polymerization of rac-lactide.
  • DOI:
    10.1039/c6dt00272b
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    C. Hermans;Weifeng Rong;T. Spaniol;J. Okuda
  • 通讯作者:
    C. Hermans;Weifeng Rong;T. Spaniol;J. Okuda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jun Okuda其他文献

Professor Dr. Jun Okuda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jun Okuda', 18)}}的其他基金

Metal Complexes of the Carbon Dioxide Dianion
二氧化碳二价阴离子的金属配合物
  • 批准号:
    374707843
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Synthese und Untersuchung der photophysikalischen Eigenschaften von Oligo(dithienophospholen) für die Anwendung in OLED- und OFET-Materialien
用于 OLED 和 OFET 材料的低聚(二噻吩并磷烯)的合成和光物理性质研究
  • 批准号:
    5448403
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molekulare Lanthanoid-Hydride: Homogenkatalysatoren für die Hydrometallierung und C-H-Bindungsaktivierung
分子镧系元素氢化物:用于加氢金属化和 C-H 键活化的均相催化剂
  • 批准号:
    5424892
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
AM2Net Advanced Macromolecular Materials By Transition Metal Catalysis; Group 2: "Post Metallocene Catalysis"; Post-metallocene polymerization catalysts for alpha-olefins and dienes
AM2Net 过渡金属催化先进高分子材料;
  • 批准号:
    5372537
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Rare Earth metal complexes as polymerization catalysts
作为聚合催化剂的稀土金属配合物
  • 批准号:
    5246976
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Development of new catalysis which realizes catalyst-controlled stereoselective radical polymerization
新型催化剂的开发实现催化剂控制的立体选择性自由基聚合
  • 批准号:
    22KJ1924
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Designing Complexes for Homogenous Catalysis and Polymerization
设计用于均相催化和聚合的配合物
  • 批准号:
    RGPIN-2016-04832
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Active control of supramolecular polymerization by using field-effect catalysis
利用场效应催化主动控制超分子聚合
  • 批准号:
    22K20531
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
New Strategies for Regulating Non-Living Olefin Polymerization Catalysis
调控非活性烯烃聚合催化的新策略
  • 批准号:
    2154532
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Designing Complexes for Homogenous Catalysis and Polymerization
设计用于均相催化和聚合的配合物
  • 批准号:
    RGPIN-2016-04832
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Novel ligand design to improve olefin polymerization catalysis
新型配体设计可改善烯烃聚合催化
  • 批准号:
    532121-2018
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
CAS: Diastereoselective Polymerization Catalysis for Stereo-Sequenced Polymers with Biodegradability and Chemical Circularity
CAS:具有生物降解性和化学循环性的立体序列聚合物的非对映选择性聚合催化
  • 批准号:
    1955482
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel ligand design to improve olefin polymerization catalysis
新型配体设计可改善烯烃聚合催化
  • 批准号:
    532121-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Designing Complexes for Homogenous Catalysis and Polymerization
设计用于均相催化和聚合的配合物
  • 批准号:
    RGPIN-2016-04832
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Catalysis at the atomic-scale: observing single-site promoted polymerization of small hydrocarbons
原子尺度的催化:观察单中心促进小分子碳氢化合物的聚合
  • 批准号:
    432043087
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了