EAGER: Electrocatalysis Modulated by Bifunctional Organic Monolayer: CO2 Reduction to C2
EAGER:双功能有机单层调节的电催化:CO2 还原为 C2
基本信息
- 批准号:2103478
- 负责人:
- 金额:$ 27.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Early-concept Grant for Exploratory Research (EAGER) provides proof-of-concept data for a novel technology supporting our nation’s transition to clean energy. Part of the clean energy equation involves the capture and conversion of carbon dioxide (CO2) produced from the combustion of fossil resources. The project further supports progress towards low carbon emission chemical manufacturing by exploring electrochemical conversion of CO2 to small building-block molecules used widely in the manufacture of a broad range of chemical and fuel products. The study focuses on novel catalyst designs that promote highly localized electric fields, thus potentially enabling more efficient energy utilization and greater CO2 conversion efficiency than obtained with conventional catalyst designs. The project also incorporates clean-energy related educational and outreach activities targeted at both pre-college and college level students. A high electric field can rearrange the electronic orbitals of chemical species and alter the electronic interactions between adsorbates and catalytic surfaces. This influences the thermodynamics, kinetics, and mechanisms of (electro)catalytic reactions. The project investigates the effects of local electric fields and exposed-surface sites on the CO2 electroreduction reaction (CO2RR) to C2 products. The concept is investigated using a combination of atomic-scale simulations, electrocatalyst synthesis, spectroscopic characterization, and electrocatalytic performance testing. The catalyst is prepared from a bifunctional thiol-based monolayer (e.g., -S-CnH2n-NH2) immobilized onto a Cu nanowire (NW) array. This catalytic structure enhances local electric fields due to opposing charges in the head and tail functional groups of the monolayer. Surface coverage of thiol molecules is simultaneously tuned to expose Cu step and defect sites. Effectiveness of the combined approach for accelerating CO2RR-to-C2 will be evaluated by (1) deriving relationships between thiol composition/structure and local field strength, (2) determining the thiol surface coverage effects on exposed Cu sites, and (3) investigating the performance and stability of the bifunctional organic monolayer modified Cu NWs under reaction conditions. In parallel with the research, the investigators will involve both graduate students and undergraduate students in their research, and participate in the Immersive Scholar Program at UMass Lowell to promote undergraduate research, including women and underrepresented minorities. The investigators will also convey the importance of clean energy technology and modular electrocatalysis into outreach activities for K-9 students and distribution via various educational media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
探索性研究早期概念补助金(EAGER)为支持我们国家向清洁能源过渡的新技术提供了概念验证数据。 清洁能源方程式的一部分涉及捕获和转化化石资源燃烧产生的二氧化碳(CO2)。 该项目通过探索将二氧化碳电化学转化为广泛用于制造各种化学和燃料产品的小分子,进一步支持在低碳排放化学制造方面取得进展。 该研究的重点是促进高度局部化电场的新型催化剂设计,从而可能实现比传统催化剂设计更有效的能源利用和更高的CO2转化效率。 该项目还包括针对大学预科和大学学生的与清洁能源有关的教育和外联活动。高电场可以重排化学物种的电子轨道,并改变吸附物和催化表面之间的电子相互作用。这影响了(电)催化反应的热力学、动力学和机理。该项目研究了局部电场和暴露表面位置对CO2电还原反应(CO2 RR)生成C2产物的影响。 这个概念是使用原子尺度的模拟,电催化剂合成,光谱表征和电催化性能测试相结合的研究。该催化剂由双官能硫醇基单层(例如,- S-CnH 2n-NH 2)固定到Cu纳米线(NW)阵列上。这种催化结构由于单层的头部和尾部官能团中的相反电荷而增强局部电场。硫醇分子的表面覆盖率同时被调整以暴露Cu台阶和缺陷位点。 用于加速CO2 RR至C2的组合方法的有效性将通过以下来评估:(1)推导硫醇组成/结构与局部场强之间的关系,(2)确定硫醇表面覆盖对暴露的Cu位点的影响,以及(3)研究双官能有机单层改性的Cu纳米线在反应条件下的性能和稳定性。在研究的同时,研究人员将让研究生和本科生参与他们的研究,并参加麻省大学洛厄尔分校的沉浸式学者计划,以促进本科生的研究,包括妇女和代表性不足的少数民族。调查人员还将传达清洁能源技术和模块化电催化的重要性到外展活动的K-9学生和分布通过各种教育媒体。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging bismuth immiscibility to create highly concave noble-metal nanoparticles
- DOI:10.1016/j.chempr.2024.02.002
- 发表时间:2024-02
- 期刊:
- 影响因子:23.5
- 作者:Melissa E. King;Yuting Xu;Porvajja Nagarajan;Noah L. Mason;Anthony J. Branco;Connor S. Sullivan;Samantha M. Silva;Sangmin Jeong;Fanglin Che;Michael B. Ross
- 通讯作者:Melissa E. King;Yuting Xu;Porvajja Nagarajan;Noah L. Mason;Anthony J. Branco;Connor S. Sullivan;Samantha M. Silva;Sangmin Jeong;Fanglin Che;Michael B. Ross
Beyond C–C coupling in CO2 reduction
超越 C–C 耦合减少二氧化碳排放
- DOI:10.1038/s44286-023-00019-9
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Xu, Yuting;Che, Fanglin
- 通讯作者:Che, Fanglin
Hybrid Organic‐Inorganic Heterogeneous Interfaces for Electrocatalysis: A Theoretical Study of CO 2 Reduction to C 2
用于电催化的有机-无机杂化多相界面:CO 2 还原为 C 2 的理论研究
- DOI:10.1002/cctc.202101224
- 发表时间:2021
- 期刊:
- 影响因子:4.5
- 作者:Wan, Mingyu;Gu, Zhiyong;Che, Fanglin
- 通讯作者:Che, Fanglin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fanglin Che其他文献
The viability of implementing hydrogen in the Commonwealth of Massachusetts
在马萨诸塞州实施氢能的可行性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.4
- 作者:
Brian Hammerstrom;C. Niezrecki;Kelly L. Hellman;Xinfang Jin;Michael B. Ross;J. H. Mack;Ertan Agar;J. Trelles;Fuqiang Liu;Fanglin Che;David Ryan;Madhava S. Narasimhadevara;Mary Usovicz - 通讯作者:
Mary Usovicz
Revealing Structural Evolution of Single Atom Catalysts during Electrochemical CO2 Reduction by in Situ X-ray Absorption Spectroscopy
通过原位 X 射线吸收光谱揭示电化学 CO2 还原过程中单原子催化剂的结构演化
- DOI:
10.1021/acsmaterialslett.4c00554 - 发表时间:
2024 - 期刊:
- 影响因子:11.4
- 作者:
Lingzhe Fang;Mingyu Wan;Yuzi Liu;Benjamin Reinhart;Zehua Jin;Ming Yang;Fanglin Che;Tao Li - 通讯作者:
Tao Li
Bridging the complexity gap in computational heterogeneous catalysis with machine learning
利用机器学习弥合计算多相催化中的复杂性差距
- DOI:
10.1038/s41929-023-00911-w - 发表时间:
2023-02-23 - 期刊:
- 影响因子:44.600
- 作者:
Tianyou Mou;Hemanth Somarajan Pillai;Siwen Wang;Mingyu Wan;Xue Han;Neil M. Schweitzer;Fanglin Che;Hongliang Xin - 通讯作者:
Hongliang Xin
Corrigendum: The viability of implementing hydrogen in the commonwealth of Massachusetts
勘误表:在马萨诸塞州实施氢能的可行性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
Brian Hammerstrom;C. Niezrecki;Kelly L. Hellman;Xinfang Jin;Michael B. Ross;J. H. Mack;Ertan Agar;J. Trelles;Fuqiang Liu;Fanglin Che;David Ryan;Madhava S. Narasimhadevara;Mary Usovicz - 通讯作者:
Mary Usovicz
Mechanisms and site requirements for NO and NHsub3/sub oxidation on Cu/SSZ-13
铜/SSZ-13 上 NO 和 NH₃氧化的机制和位点要求
- DOI:
10.1016/j.apcatb.2024.123726 - 发表时间:
2024-06-05 - 期刊:
- 影响因子:21.100
- 作者:
Yilin Wang;Runze Zhao;Kenneth G. Rappé;Yong Wang;Fanglin Che;Feng Gao - 通讯作者:
Feng Gao
Fanglin Che的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
- 批准号:
EP/Y002911/1 - 财政年份:2024
- 资助金额:
$ 27.05万 - 项目类别:
Research Grant
CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis
职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论
- 批准号:
2339693 - 财政年份:2024
- 资助金额:
$ 27.05万 - 项目类别:
Continuing Grant
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
- 批准号:
2338917 - 财政年份:2024
- 资助金额:
$ 27.05万 - 项目类别:
Continuing Grant
CAS: Electrochemical Ionic Hydrogenation: Promoting Carbonyl and Imine Reduction through Electrocatalysis
CAS:电化学离子氢化:通过电催化促进羰基和亚胺还原
- 批准号:
2247645 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant
Scanning Electrochemical Microscopy of Single-Crystal Hydrogen Electrocatalysis
单晶氢电催化的扫描电化学显微镜
- 批准号:
2304922 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Continuing Grant
Production of C1/C2 Commodity-Chemicals via Efficient Electrocatalysis
通过高效电催化生产 C1/C2 日用化学品
- 批准号:
DP230102027 - 财政年份:2023
- 资助金额:
$ 27.05万 - 项目类别:
Discovery Projects
Investigation of Metal Organic Frameworks for Renewable Energy Electrocatalysis
可再生能源电催化金属有机框架的研究
- 批准号:
RGPIN-2019-05927 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Discovery Grants Program - Individual
SONOCATALYSIS and SONOELECTROCATALYSIS - Understanding the effects of ultrasound in catalysis and electrocatalysis
声催化和声电催化 - 了解超声波在催化和电催化中的作用
- 批准号:
RGPIN-2022-05108 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Discovery Grants Program - Individual
Electrocatalysis for Renewable Energy Production and Conversion
可再生能源生产和转化的电催化
- 批准号:
CRC-2019-00011 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Canada Research Chairs
CAS: Nitrogen-Coupled Carbon Dioxide Conversion to Methylamine: Molecular Level Understanding and Tailoring of the Electrocatalysis
CAS:氮耦合二氧化碳转化为甲胺:分子水平上电催化的理解和定制
- 批准号:
2154724 - 财政年份:2022
- 资助金额:
$ 27.05万 - 项目类别:
Standard Grant