CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
基本信息
- 批准号:2338917
- 负责人:
- 金额:$ 60.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electrocatalytic processes can satisfy the growing demand for sustainable fuels and chemicals by enabling the use of renewably generated electricity in industrial chemical production. To that goal, the project explores fundamental aspects of electrocatalysis that can be deployed in electrochemical reactors (i.e., electrolyzers) to convert the waste product carbon dioxide (CO2), a greenhouse gas, into valuable ethylene, a precursor for plastics production. Beyond CO2 emissions reduction, the electrochemical approach opens the door to using electricity from wind or solar power – thus helping to close the carbon cycle. Specifically, the project focuses on improving electrolyzer performance through better understanding of the complex chemistry occurring at the interface between the electrocatalyst and a liquid or polymer electrolyte containing mobile solvent molecules and ions. The project will additionally enhance science and engineering education through demonstrations of solvent and ion effects in chemistry via the Horizons program and hands-on research experiences in both experiment and computational modeling through a yearly 2-day workshop for high-school students on sustainable chemical production at Clarkson University. The structure and composition of the electrode/electrolyte interface are known to dictate the activity, selectivity, and mechanism of electrocatalytic reactions. The overarching goals of this work are to i) understand quantitatively the chemical and physical interactions that drive near-surface spectator ion and solvent effects in electrocatalysis, ii) refine and benchmark a computationally tractable density functional theory (DFT) based approach to predict these effects, and iii) advance a novel electrochemical technique, developed by the investigator, to tune the electrode/electrolyte interface for enhanced electrocatalysis. To achieve these goals, the project combines DFT modeling with experiments on both well-defined, single-crystal electrodes, and on industrially relevant nanoparticle catalysts, to quantify the cation surface concentration and the effects of solvent-cation-adsorbate/surface interactions during CO2 electroreduction. With this understanding, the investigators will use a technique – recently developed in their laboratory - to selectively “decorate” the surface of industrially-relevant electrocatalysts with organic molecules allowing predictive tailoring of the behavior of solvent and ions at this interface. This approach will not only yield fundamental insight into cation, pH, and solvent effects in electrocatalysis, but also generate a computationally tractable approach to accurately predict these effects. Together, those efforts will identify electrocatalyst-electrolyte combinations and organic modifiers which yield improved CO2 electroreduction performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电催化工艺可以通过在工业化学品生产中使用可再生电力来满足对可持续燃料和化学品日益增长的需求。 为了实现这一目标,该项目探索了可以在电化学反应器中部署的电催化的基本方面(即,电解槽)将废物二氧化碳(一种温室气体)转化为有价值的乙烯,一种塑料生产的前体。 除了减少二氧化碳排放量,电化学方法还为利用风能或太阳能发电打开了大门,从而有助于关闭碳循环。具体而言,该项目的重点是通过更好地理解电催化剂与含有移动的溶剂分子和离子的液体或聚合物电解质之间界面处发生的复杂化学反应来改善电解槽性能。 该项目还将通过Horizons计划展示化学中的溶剂和离子效应,并通过克拉克森大学每年为高中生举办为期2天的可持续化学生产研讨会,在实验和计算建模方面提供实践研究经验,从而加强科学和工程教育。已知电极/电解质界面的结构和组成决定电催化反应的活性、选择性和机理。这项工作的总体目标是i)定量地了解驱动电催化中近表面旁观离子和溶剂效应的化学和物理相互作用,ii)改进和基准化基于计算易处理的密度泛函理论(DFT)的方法来预测这些效应,以及iii)推进由研究者开发的新型电化学技术,以调节电极/电解质界面以增强电催化。为了实现这些目标,该项目将DFT建模与定义明确的单晶电极和工业相关纳米颗粒催化剂的实验相结合,以量化CO2电还原过程中阳离子表面浓度和溶剂-阳离子-吸附物/表面相互作用的影响。有了这样的理解,研究人员将使用一种技术-最近在他们的实验室开发-选择性地“装饰”与有机分子的工业相关的电催化剂的表面,允许预测定制的溶剂和离子在这个界面上的行为。这种方法不仅将产生基本的洞察阳离子,pH值和溶剂的电催化作用,但也产生一个计算易处理的方法来准确地预测这些影响。这些努力将共同确定电催化剂-电解质组合和有机改性剂,从而提高CO2电还原性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian McCrum其他文献
Ian McCrum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian McCrum', 18)}}的其他基金
ERI: Better by Design: Rational Design and Synthesis of Alloy (Electro)Catalysts Atom-by-Atom
ERI:更好的设计:逐原子合金(电)催化剂的合理设计与合成
- 批准号:
2301427 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Standard Grant
相似海外基金
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 60.14万 - 项目类别:
Continuing Grant
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
- 批准号:
10580116 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Predictive ability of early somatosensory processing in preterm children on later motor development
早产儿早期体感处理对后期运动发育的预测能力
- 批准号:
10638542 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Bacteriophage as a predictive biomarker in chronic Pseudomonas airway disease
噬菌体作为慢性假单胞菌气道疾病的预测生物标志物
- 批准号:
10723956 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Real-time predictive modeling for public health departments to control infectious diseases
公共卫生部门控制传染病的实时预测模型
- 批准号:
10878316 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Machine Learning and Multiomics for Predictive Models and Biomarker Discovery in Preterm Infants.
用于早产儿预测模型和生物标志物发现的机器学习和多组学。
- 批准号:
10729640 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
EDGE CMT: deleterious recessive variation - from experimental data to predictive models
EDGE CMT:有害的隐性变异 - 从实验数据到预测模型
- 批准号:
10675239 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Predictive drivers of new onset, relapse, and progression of human autoimmunity in skin
人类皮肤自身免疫新发、复发和进展的预测驱动因素
- 批准号:
10658149 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别:
Developing Personalized Predictive Models of Aggression
开发个性化的攻击性预测模型
- 批准号:
10662685 - 财政年份:2023
- 资助金额:
$ 60.14万 - 项目类别: