III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets
III:媒介:协作研究:将时间序列分析扩展到海量地震数据集
基本信息
- 批准号:2103976
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will enable a team of computer scientists and earth scientists at the University of California-Riverside, the University of California-San Diego and the University of New Mexico to develop novel tools to search existing seismographic databases for subtle earthquakes that may have evaded detection. These more complete earthquake catalogues will allow more accurate hazard analysis and risk reduction. The intellectual merit of the proposed work is in creating novel data representations, definitions, algorithms (and ultimately, highly usable open-source code) that will allow the seismological community greatly to expand both the type and the scale of the analytics that they can perform, both offline and in real time. The broader impacts of this project results from the more comprehensive and complete earthquake catalogs created. These have the potential to affect multiple branches of earthquake science. For example, the more accurate hazard and risk models derived from the catalogs can be used by governments and private industry to plan for and mitigate economic and human losses, e.g., by mandating resilient construction and infrastructure, and by accurately assessing insured risk. In addition, the projects comprehensive educational and outreach activities have already been piloted on a small scale and include detailed plans to reach out to underserved communities at the K-12 and college levels, and to create grade-level appropriate teaching resources that exploit the natural interest most K-12 students have in the drama of earthquakes.Humans notice large earthquakes, but the frequently occurring smaller quakes caused by the constant slipping of fault lines typically go unnoticed, even by skilled seismologists with access to telemetry. However, these imperceptible quakes could help us understand the physical processes that trigger hazardous earthquakes, assisting in hazard-reduction efforts. Recently, a novel data structure called the Matrix Profile has emerged as a very promising technique for pattern discovery in large datasets. The PIs, an interdisciplinary team of computer scientists and seismologists, propose to investigate techniques to use Matrix Profile the scale up the size of datasets that can be investigated by 100X magnitude, to find 20X more earthquakes. The intellectual merit of this project will result in novel data representations, definitions, algorithms (and ultimately, highly usable open-source code) that will allow the seismological community to expand both the type and the scale of the analytics that they can perform. The broader impacts of this project are difficult to overstate. Comprehensive and complete earthquake catalogs are foundational to multiple branches of earthquake science, notably the physics of earthquake nucleation, hazard analysis and risk reduction. The hazard and risk models derived from them can be used by governments and private industry to plan for and mitigate economic and human losses, e.g. by mandating resilient construction and infrastructure, and by accurately assessing insured risk. The project’s comprehensive educational and outreach activities have already been piloted on a small scale and include detailed plans to reach out to under-served communities at the K-12 and college levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使加州大学河滨分校、加州大学圣地亚哥分校和新墨西哥州大学的一个计算机科学家和地球科学家小组能够开发新的工具,在现有的地震数据库中搜索可能逃避检测的轻微地震。这些更完整的地震目录将有助于更准确地进行灾害分析和减少风险。拟议工作的智力价值在于创建新的数据表示,定义,算法(最终,高度可用的开源代码),这将使地震学社区大大扩展他们可以执行的分析的类型和规模,无论是离线还是真实的时间。该项目的更广泛的影响来自于创建的更全面和完整的地震目录。这些都有可能影响地震科学的多个分支。例如,从目录中导出的更准确的危害和风险模型可以被政府和私营企业用于规划和减轻经济和人类损失,例如,通过强制执行弹性建筑和基础设施,以及准确评估保险风险。此外,该项目的综合教育和外展活动已经在小规模上进行了试点,包括详细的计划,以接触K-12和大学水平的服务不足的社区,并创建年级适当的教学资源,利用大多数K-12学生对地震戏剧的自然兴趣。但断层线不断滑动所造成的频繁发生的较小地震通常不会被注意到,即使是有遥测技术的熟练地震学家也不会注意到。然而,这些难以察觉的地震可以帮助我们了解引发危险地震的物理过程,有助于减少灾害的努力。最近,一种新的数据结构,称为矩阵配置文件已成为一个非常有前途的技术,在大型数据集的模式发现。PI是一个由计算机科学家和地震学家组成的跨学科团队,他们建议研究使用Matrix Profile的技术,将可以调查的数据集规模扩大100倍,以发现20倍以上的地震。该项目的智力价值将导致新的数据表示,定义,算法(最终,高度可用的开源代码),这将允许地震学社区扩展他们可以执行的分析的类型和规模。该项目的广泛影响难以夸大。全面和完整的地震目录是地震科学多个分支的基础,特别是地震成核物理学,灾害分析和风险降低。政府和私营企业可以使用从中得出的灾害和风险模型来规划和减轻经济和人员损失,例如通过强制执行弹性建筑和基础设施以及准确评估保险风险。该项目的综合教育和外展活动已经在小规模上进行了试点,包括在K-12和大学层面向服务不足的社区伸出援手的详细计划。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Introducing the contrast profile: a novel time series primitive that allows real world classification
介绍对比度配置文件:一种新颖的时间序列原语,允许现实世界分类
- DOI:10.1007/s10618-022-00824-5
- 发表时间:2022
- 期刊:
- 影响因子:4.8
- 作者:Ryan Mercer, Sara Alaee
- 通讯作者:Ryan Mercer, Sara Alaee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eamonn Keogh其他文献
Irrevocable-choice algorithms for sampling from a stream
- DOI:
10.1007/s10618-016-0472-z - 发表时间:
2016-06-30 - 期刊:
- 影响因子:4.300
- 作者:
Yan Zhu;Eamonn Keogh - 通讯作者:
Eamonn Keogh
Beyond one billion time series: indexing and mining very large time series collections with $$i$$ SAX2+
- DOI:
10.1007/s10115-012-0606-6 - 发表时间:
2013-02-16 - 期刊:
- 影响因子:3.100
- 作者:
Alessandro Camerra;Jin Shieh;Themis Palpanas;Thanawin Rakthanmanon;Eamonn Keogh - 通讯作者:
Eamonn Keogh
Correction to: Domain agnostic online semantic segmentation for multi-dimensional time series
- DOI:
10.1007/s10618-019-00618-2 - 发表时间:
2019-02-14 - 期刊:
- 影响因子:4.300
- 作者:
Shaghayegh Gharghabi;Chin-Chia Michael Yeh;Yifei Ding;Wei Ding;Paul Hibbing;Samuel LaMunion;Andrew Kaplan;Scott E. Crouter;Eamonn Keogh - 通讯作者:
Eamonn Keogh
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
- DOI:
10.1007/pl00011669 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:3.100
- 作者:
Eamonn Keogh;Kaushik Chakrabarti;Michael Pazzani;Sharad Mehrotra - 通讯作者:
Sharad Mehrotra
Converting non-parametric distance-based classification to anytime algorithms
- DOI:
10.1007/s10044-007-0098-2 - 发表时间:
2008-01-12 - 期刊:
- 影响因子:2.000
- 作者:
Xiaopeng Xi;Ken Ueno;Eamonn Keogh;Dah-Jye Lee - 通讯作者:
Dah-Jye Lee
Eamonn Keogh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eamonn Keogh', 18)}}的其他基金
Discovery Projects - Grant ID: DP210100072
发现项目 - 拨款 ID:DP210100072
- 批准号:
ARC : DP210100072 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Discovery Projects
NRT-DESE: NRT in Integrated Computational Entomology (NICE)
NRT-DESE:综合计算昆虫学 (NICE) 中的 NRT
- 批准号:
1631776 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
RI: Medium: Machine Learning for Agricultural and Medical Entomology
RI:媒介:农业和医学昆虫学的机器学习
- 批准号:
1510741 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
REU Site: RE-ICE: Research Experiences in Integrated Computational Entomology
REU 网站:RE-ICE:综合计算昆虫学的研究经验
- 批准号:
1452367 - 财政年份:2015
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
III: Medium: Hardware/Software Accelerated Data Mining for Real-Time Monitoring of Streaming Pediatric ICU Data
III:媒介:用于实时监控流式儿科 ICU 数据的硬件/软件加速数据挖掘
- 批准号:
1161997 - 财政年份:2012
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Tools to Mine and Index Trajectories of Physical Artifacts
挖掘和索引物理文物轨迹的工具
- 批准号:
0803410 - 财政年份:2008
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and intelligent searching of biological images by query and network navigation with learning capabilities
III-CXT-Large:协作研究:通过具有学习能力的查询和网络导航对生物图像进行交互式和智能搜索
- 批准号:
0808770 - 财政年份:2008
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Efficient Discovery of Previously Unknown Patterns and Relationships in Massive Time Series Databases
职业:在海量时间序列数据库中有效发现以前未知的模式和关系
- 批准号:
0237918 - 财政年份:2003
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant