III: Medium: Hardware/Software Accelerated Data Mining for Real-Time Monitoring of Streaming Pediatric ICU Data

III:媒介:用于实时监控流式儿科 ICU 数据的硬件/软件加速数据挖掘

基本信息

  • 批准号:
    1161997
  • 负责人:
  • 金额:
    $ 119.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

On any given day in America, there are at least one thousand children fighting for their lives in Pediatric Intensive Care Units (PICUs). In the PICU the patient's condition is carefully monitored with automatic sensors. Most of this data is shown in a five-minute "sliding window" display, so a doctor summoned to a patient's bedside always has her most recent history to consider. However what happens to the data that "falls off" this sliding window? In most PICUs, a tiny fraction of it is coarsely aggregated and recorded, but surprisingly, most of this data is simply discarded. Even if most or all the data is recorded, its sheer volume simply overwhelms researchers and analysts; very few tools exist to help them make sense of and learn from this data. This currently discarded data is a potential goldmine of actionable knowledge that could improve outcomes (decreased mortality/morbidity, reduce pain, etc.), and reduce costs (implicit in reduced length of stay). However, the very nature of this data - multivariate, heterogeneous, high dimensional, temporal, noisy, biased, and high frequency - poses significant challenges for traditional analytical techniques from statistics and data mining.In this project, an interdisciplinary team of investigators is developing: (a) xcalable machine learning algorithms for mining archives of annotated PICU data to find regularities and patterns that can be used to aid in diagnostics and prediction of outcomes; and (b) techniques for monitoring ICU telemetry in real time to detect whether the patterns and rules discovered in the offline step have occurred and can be used to guide interventions (actions by the doctor).The project brings together experts in data mining (Keogh, Tsotras), high performance computing (Najjar), and medicine (Wetzel) to investigate holistic solutions to the above problems. The project contributes to research-based advanced training of graduate and undergraduate students at the University of California Riverside. The findings, datasets, software, and teaching materials created by this project will be archived in perpetuity at www.cs.ucr.edu/~eamonn/UCRPICU/
在美国,每天至少有1000名儿童在儿科重症监护病房(picu)里与死神搏斗。在重症监护病房中,病人的病情由自动传感器仔细监测。这些数据大多以五分钟的“滑动窗口”显示,因此,被叫到病人床边的医生总是要考虑她最近的病史。然而,从这个滑动窗口“掉下来”的数据会发生什么?在大多数picu中,它的一小部分被粗略地汇总和记录,但令人惊讶的是,大多数这些数据被简单地丢弃。即使大部分或全部数据都被记录下来,其庞大的数量也会让研究人员和分析人员不堪重负;很少有工具可以帮助他们理解并从这些数据中学习。这些目前被丢弃的数据是一个潜在的可操作知识的金矿,可以改善结果(降低死亡率/发病率,减轻疼痛等),并降低成本(隐含在缩短住院时间)。然而,这些数据的本质——多元的、异构的、高维的、时间的、嘈杂的、有偏差的和高频率的——对传统的统计和数据挖掘分析技术提出了重大的挑战。在这个项目中,一个跨学科的研究小组正在开发:(a)可扩展的机器学习算法,用于挖掘带注释的PICU数据档案,以发现可用于帮助诊断和预测结果的规律和模式;(b)实时监测ICU遥测技术,以检测离线步骤中发现的模式和规则是否已经发生,并可用于指导干预(医生的行动)。该项目汇集了数据挖掘(Keogh, Tsotras)、高性能计算(Najjar)和医学(Wetzel)方面的专家,研究上述问题的整体解决方案。该项目为加州大学河滨分校的研究生和本科生提供以研究为基础的高级培训。这个项目创建的发现、数据集、软件和教学材料将在www.cs.ucr.edu/~eamonn/UCRPICU/永久存档

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eamonn Keogh其他文献

Irrevocable-choice algorithms for sampling from a stream
  • DOI:
    10.1007/s10618-016-0472-z
  • 发表时间:
    2016-06-30
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Yan Zhu;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Beyond one billion time series: indexing and mining very large time series collections with $$i$$ SAX2+
  • DOI:
    10.1007/s10115-012-0606-6
  • 发表时间:
    2013-02-16
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Alessandro Camerra;Jin Shieh;Themis Palpanas;Thanawin Rakthanmanon;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Correction to: Domain agnostic online semantic segmentation for multi-dimensional time series
  • DOI:
    10.1007/s10618-019-00618-2
  • 发表时间:
    2019-02-14
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Shaghayegh Gharghabi;Chin-Chia Michael Yeh;Yifei Ding;Wei Ding;Paul Hibbing;Samuel LaMunion;Andrew Kaplan;Scott E. Crouter;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
  • DOI:
    10.1007/pl00011669
  • 发表时间:
    2001-08-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Eamonn Keogh;Kaushik Chakrabarti;Michael Pazzani;Sharad Mehrotra
  • 通讯作者:
    Sharad Mehrotra
The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances
  • DOI:
    10.1007/s10618-016-0483-9
  • 发表时间:
    2016-11-23
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Anthony Bagnall;Jason Lines;Aaron Bostrom;James Large;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh

Eamonn Keogh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eamonn Keogh', 18)}}的其他基金

III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets
III:媒介:协作研究:将时间序列分析扩展到海量地震数据集
  • 批准号:
    2103976
  • 财政年份:
    2021
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant
Discovery Projects - Grant ID: DP210100072
发现项目 - 拨款 ID:DP210100072
  • 批准号:
    ARC : DP210100072
  • 财政年份:
    2021
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Discovery Projects
NRT-DESE: NRT in Integrated Computational Entomology (NICE)
NRT-DESE:综合计算昆虫学 (NICE) 中的 NRT
  • 批准号:
    1631776
  • 财政年份:
    2016
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
RI: Medium: Machine Learning for Agricultural and Medical Entomology
RI:媒介:农业和医学昆虫学的机器学习
  • 批准号:
    1510741
  • 财政年份:
    2015
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
REU Site: RE-ICE: Research Experiences in Integrated Computational Entomology
REU 网站:RE-ICE:综合计算昆虫学的研究经验
  • 批准号:
    1452367
  • 财政年份:
    2015
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Tools to Mine and Index Trajectories of Physical Artifacts
挖掘和索引物理文物轨迹的工具
  • 批准号:
    0803410
  • 财政年份:
    2008
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and intelligent searching of biological images by query and network navigation with learning capabilities
III-CXT-Large:协作研究:通过具有学习能力的查询和网络导航对生物图像进行交互式和智能搜索
  • 批准号:
    0808770
  • 财政年份:
    2008
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Discovery of Previously Unknown Patterns and Relationships in Massive Time Series Databases
职业:在海量时间序列数据库中有效发现以前未知的模式和关系
  • 批准号:
    0237918
  • 财政年份:
    2003
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320972
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
  • 批准号:
    2320975
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
  • 批准号:
    2247755
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247893
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2403723
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: A hardware-software co-design approach for high-performance in-memory analytic data processing
协作研究:SHF:中:用于高性能内存分析数据处理的硬件软件协同设计方法
  • 批准号:
    2312741
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Hardware Security Insights: Analyzing Hardware Designs to Understand and Assess Security Weaknesses and Vulnerabilities
协作研究:SaTC:核心:中:硬件安全见解:分析硬件设计以了解和评估安全弱点和漏洞
  • 批准号:
    2247756
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了