CAREER: Efficient Discovery of Previously Unknown Patterns and Relationships in Massive Time Series Databases

职业:在海量时间序列数据库中有效发现以前未知的模式和关系

基本信息

  • 批准号:
    0237918
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

To date, the vast majority of research on time series data mining has focused on similarity search and to a lesser extent on clustering. However, from a knowledge discovery viewpoint, there are several important unsolved problems in time series data mining that are more interesting, important, and challenging. This project addresses these problems. The long-term goal is the creation of efficient algorithms to allow the extraction of knowledge in the form of patterns, anomalies, regularities and rules, from massive time series datasets. Because of the ubiquity of times series data, the work may have benefits in areas as diverse as cardiology, industry, astronomy, medicine, bioinformatics, finance, meteorology, entertainment and networking. Local collaborators in industry and science, who will test the algorithms, have been identified. To enhance broader impacts of this project, results will be disseminated by an expansion of the UCR Time Series Data Mining Archive, which will make all code, datasets and publications created by the project freely available to data mining researchers and practitioners. The Web site (http://www.cs.ucr.edu/~eamonn/NSFcareer/NSF.html) provides more information about this project.A special feature of the project is an effort involving undergraduate and graduate students to find, implement and compare relevant work to the approach developed in this project. Time series data analysis is very important for business and thus the project will have broad impact beyond its scientific impact.
到目前为止,时间序列数据挖掘的绝大多数研究都集中在相似性搜索上,在较小程度上集中在聚类上。然而,从知识发现的角度来看,在时间序列数据挖掘中有几个重要的未解决的问题是更有趣的,重要的,和具有挑战性的。这个项目解决了这些问题。长期目标是创建有效的算法,以允许从大量时间序列数据集中提取模式,异常,规则和规则形式的知识。由于时间序列数据的普遍存在,这项工作可能在心脏病学、工业、天文学、医学、生物信息学、金融、气象学、娱乐和网络等不同领域都有好处。已经确定了工业和科学领域的当地合作者,他们将测试这些算法。为了扩大该项目的影响,将通过扩大UCR时间序列数据挖掘档案来传播成果,这将使数据挖掘研究人员和从业人员免费获得该项目创建的所有代码、数据集和出版物。该网站(http://www.cs.ucr.edu/caseamonn/NSFcareer/NSF.html)提供了关于该项目的更多信息。该项目的一个特点是,本科生和研究生努力寻找、实施和比较与该项目开发的方法有关的工作。时间序列数据分析对商业非常重要,因此该项目将产生超出其科学影响的广泛影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eamonn Keogh其他文献

Irrevocable-choice algorithms for sampling from a stream
  • DOI:
    10.1007/s10618-016-0472-z
  • 发表时间:
    2016-06-30
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Yan Zhu;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Beyond one billion time series: indexing and mining very large time series collections with $$i$$ SAX2+
  • DOI:
    10.1007/s10115-012-0606-6
  • 发表时间:
    2013-02-16
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Alessandro Camerra;Jin Shieh;Themis Palpanas;Thanawin Rakthanmanon;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Correction to: Domain agnostic online semantic segmentation for multi-dimensional time series
  • DOI:
    10.1007/s10618-019-00618-2
  • 发表时间:
    2019-02-14
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Shaghayegh Gharghabi;Chin-Chia Michael Yeh;Yifei Ding;Wei Ding;Paul Hibbing;Samuel LaMunion;Andrew Kaplan;Scott E. Crouter;Eamonn Keogh
  • 通讯作者:
    Eamonn Keogh
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
  • DOI:
    10.1007/pl00011669
  • 发表时间:
    2001-08-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Eamonn Keogh;Kaushik Chakrabarti;Michael Pazzani;Sharad Mehrotra
  • 通讯作者:
    Sharad Mehrotra
Converting non-parametric distance-based classification to anytime algorithms
  • DOI:
    10.1007/s10044-007-0098-2
  • 发表时间:
    2008-01-12
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Xiaopeng Xi;Ken Ueno;Eamonn Keogh;Dah-Jye Lee
  • 通讯作者:
    Dah-Jye Lee

Eamonn Keogh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eamonn Keogh', 18)}}的其他基金

III: Medium: Collaborative Research: Scaling Time Series Analytics to Massive Seismology Datasets
III:媒介:协作研究:将时间序列分析扩展到海量地震数据集
  • 批准号:
    2103976
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Discovery Projects - Grant ID: DP210100072
发现项目 - 拨款 ID:DP210100072
  • 批准号:
    ARC : DP210100072
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
NRT-DESE: NRT in Integrated Computational Entomology (NICE)
NRT-DESE:综合计算昆虫学 (NICE) 中的 NRT
  • 批准号:
    1631776
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RI: Medium: Machine Learning for Agricultural and Medical Entomology
RI:媒介:农业和医学昆虫学的机器学习
  • 批准号:
    1510741
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
REU Site: RE-ICE: Research Experiences in Integrated Computational Entomology
REU 网站:RE-ICE:综合计算昆虫学的研究经验
  • 批准号:
    1452367
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
III: Medium: Hardware/Software Accelerated Data Mining for Real-Time Monitoring of Streaming Pediatric ICU Data
III:媒介:用于实时监控流式儿科 ICU 数据的硬件/软件加速数据挖掘
  • 批准号:
    1161997
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Tools to Mine and Index Trajectories of Physical Artifacts
挖掘和索引物理文物轨迹的工具
  • 批准号:
    0803410
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and intelligent searching of biological images by query and network navigation with learning capabilities
III-CXT-Large:协作研究:通过具有学习能力的查询和网络导航对生物图像进行交互式和智能搜索
  • 批准号:
    0808770
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316012
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DEMO Discovery of efficient Enzyme-like Metal Organic frameworks to activate biomethane at low temperature
演示:发现高效的类酶金属有机框架,可在低温下激活生物甲烷
  • 批准号:
    EP/Y032799/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Data-driven discovery of novel terpene synthases and its utilization for efficient production of structurally divergent compounds through a light control system in bacteria
数据驱动的新型萜烯合酶的发现及其通过细菌中的光控制系统有效生产结构不同的化合物
  • 批准号:
    23K13898
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
  • 批准号:
    10793779
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316011
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BRITE Pivot: Advancing Knowledge in Water-Shell Structure Interaction Through Discovery of Efficient Hydrodynamic and Structural Thin-shell Forms
BRITE Pivot:通过发现有效的流体动力学和结构薄壳形式来推进水壳结构相互作用的知识
  • 批准号:
    2227489
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Establishment of efficient pathological analysis and drug discovery platform for amyotrophic lateral sclerosis using disease specific iPSCs
利用疾病特异性 iPSC 建立肌萎缩侧索硬化症的高效病理分析和药物发现平台
  • 批准号:
    23K06975
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
L2M NSERC - Fibre-optic label-free single protein analysis for more efficient drug discovery assays
L2M NSERC - 光纤无标记单蛋白分析,可实现更高效的药物发现分析
  • 批准号:
    580665-2023
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Idea to Innovation
Developing an efficient compound screening approach for the discovery of novel GPCR receptor antagonists
开发一种有效的化合物筛选方法来发现新型 GPCR 受体拮抗剂
  • 批准号:
    2747439
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Integrating innovative computational and organic synthesis for efficient asymmetric catalyst discovery
整合创新计算和有机合成以实现高效的不对称催化剂发现
  • 批准号:
    RGPIN-2022-03383
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了