Frameworks: Collaborative Research: ChronoLog: A High-Performance Storage Infrastructure for Activity and Log Workloads

框架:协作研究:ChronoLog:用于活动和日志工作负载的高性能存储基础架构

基本信息

  • 批准号:
    2104013
  • 负责人:
  • 金额:
    $ 267.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Modern computing applications generate massive amounts of data at unprecedented rates. Beyond simply storing data, one increasingly common requirement is to store activity data, also known as log data, which describe things that happen rather than things that are. Activity data are generated by computing systems, scientific instruments, electrical devices, etc. as well as by humans. The fast growing of activity data stresses current data management systems beyond their capability and becomes a known killer performance bottleneck of high-performance computing systems. This project develops ChronoLog, a novel system for organizing and storing activity data effectively and efficiently. ChronoLog leverages modern storage hardware and provides user-focused plugins and easy-to-use interface for productivity. It will benefit a diverse range of communities in various ways, such as enabling better fraud detection in financial transactions, faster and more accurate weather predictions and simulations, reduced time-to-insight for medical and bioengineering data, autonomous computing (e.g., driving), and more secure web and mobile services. ChronoLog uses physical time to provide a synchronization-free data distribution and the total ordering on a log. It first leverages multiple storage tiers, such as storage-class memories (e.g., 3D XPoint) and new flash storage (e.g., NVMe SSDs), to transparently scale the log via log auto-tiering. It then adopts a tunable parallel access model, which offers multiple-writers-multiple-readers (MWMR) semantics and highly concurrent I/O, to fully utilize the multi-tiered storage environment. ChronoLog's innovative design supports high-performance data access via I/O isolation between tails and historical operations, efficient resource utilization with newly developed elastic storage capabilities, and scalability using a novel 3D log distribution. It facilitates data processing pipelining by acting as an authoritative source of strong consistency and with the help of fast append and commit semantics. It can be used as an arbitrator offering a plethora of features such as transactional isolation and atomicity, a consensus engine for consistent replication and indexing services, and a scalable data integration and warehousing solution. ChronoLog and its plugins establish a robust, flexible, and high-performance storage ecosystem that promotes the development of scalable applications and services for high performance computing systems. The project includes a diverse group of collaborators who share a common need for a fundamentally new approach to distributed logging to address their use cases. These close partnerships will strengthen the bonds between academic and applied science, ultimately leading to new applications and driving discovery in domains as diverse as geoscience, cosmology, and astrophysics. Forming these collaborations and integrating students and junior IT professionals will create a well-trained workforce in cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算应用程序以前所未有的速率产生大量数据。除了简单地存储数据外,一个日益普遍的要求是存储活动数据(也称为日志数据),这些数据描述了发生的事情而不是事物。活动数据是通过计算系统,科学仪器,电气设备等以及人类生成的。活动数据的快速增长强调了当前的数据管理系统超出其能力,并成为高性能计算系统的已知杀手性能瓶颈。该项目开发时间表,这是一个有效,有效地组织和存储活动数据的新型系统。按时间顺序利用现代存储硬件,并提​​供以用户为中心的插件和易于使用的界面以提高生产力。它将以各种方式使各种各样的社区受益,例如在金融交易中更好地欺诈检测,更快,更准确的天气预测和模拟,减少医疗和生物工程数据的时间段落,自动驾驶计算(例如驾驶)以及更安全的网络和移动服务。按钮使用物理时间来提供无同步的数据分布和日志上的总订购。它首先利用多个存储层,例如存储级记忆(例如3D Xpoint)和新的闪存存储(例如NVME SSD),以通过日志自动层透明地扩展日志。然后,它采用可调的并行访问模型,该模型提供了多个编织者 - 读取器(MWMR)语义和高度并发I/O,以充分利用多层存储环境。按Chronolog的创新设计通过I/O之间的I/O隔离,具有新开发的弹性存储功能的有效资源利用以及使用新颖的3D日志分布的可扩展性来支持高性能数据访问。它通过充当强大一致性的权威来源并借助快速附加和提交语义来促进数据处理。它可以用作提供多种功能的仲裁员,例如交易隔离和原子能,共识引擎,用于一致的复制和索引服务,以及可扩展的数据集成和仓库解决方案。按钮及其插件建立了一个健壮,灵活和高性能的存储生态系统,可促进高性能计算系统的可扩展应用程序和服务的开发。该项目包括一组各种各样的合作者,他们共同需要一种从根本上进行分发日志记录以解决其用例的新方法。这些紧密的伙伴关系将加强学术和应用科学之间的纽带,最终导致新的应用并推动在地球科学,宇宙学和天体物理学等领域的发现。组成这些合作并整合学生和初级IT专业人员将创建一个训练有素的网络基础设施劳动力。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准来通过评估来获得支持的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Evaluation of DAOS for Simulation and Deep Learning HPC Workloads
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xian-He Sun其他文献

LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching Perspective
LPM:从匹配角度优化并发数据访问模式的系统方法
Enhancing hybrid parallel file system through performance and space-aware data layout
通过性能和空间感知数据布局增强混合并行文件系统
Applications and Accuracy of the Parallel Diagonal Dominant
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun
Application and Accuracy of the Parallel Diagonal Dominant Algorithm
  • DOI:
    10.1016/0167-8191(95)00018-j
  • 发表时间:
    1995-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun
HARL: Optimizing Parallel File Systems with Heterogeneity-Aware Region-Level Data Layout
HARL:使用异构感知区域级数据布局优化并行文件系统

Xian-He Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xian-He Sun', 18)}}的其他基金

OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
  • 批准号:
    2313154
  • 财政年份:
    2023
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
  • 批准号:
    2152497
  • 财政年份:
    2022
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Optimization of Memory Architectures: A Foundation Approach
合作研究:SHF:小型:内存架构优化:基础方法
  • 批准号:
    2008907
  • 财政年份:
    2020
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
CSR: Small: IRIS: A unified data access framework for the merging of compute-centric and data-centric storage
CSR:小型:IRIS:用于合并以计算为中心和以数据为中心的存储的统一数据访问框架
  • 批准号:
    1814872
  • 财政年份:
    2019
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Framework: Software: NSCI: Collaborative Research: Hermes: Extending the HDF Library to Support Intelligent I/O Buffering for Deep Memory and Storage Hierarchy Systems
框架: 软件:NSCI:协作研究:Hermes:扩展 HDF 库以支持深度内存和存储层次系统的智能 I/O 缓冲
  • 批准号:
    1835764
  • 财政年份:
    2018
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
CRI: II-NEW: A Big Data Professing Infrastructure for Smart Energy Systems
CRI:II-NEW:智能能源系统的大数据专业基础设施
  • 批准号:
    1730488
  • 财政年份:
    2017
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience
Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性
  • 批准号:
    1744317
  • 财政年份:
    2017
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
CSR: Small: Empower Data-Intensive Computing: the integrated data management approach
CSR:小:赋能数据密集型计算:集成数据管理方法
  • 批准号:
    1526887
  • 财政年份:
    2015
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Utilizing Memory Parallelism for High Performance Data Processing
利用内存并行性进行高性能数据处理
  • 批准号:
    1536079
  • 财政年份:
    2015
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant

相似国自然基金

多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
    22204104
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
  • 批准号:
    61571362
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
  • 批准号:
    61571033
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 267.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了