Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience

Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性

基本信息

  • 批准号:
    1744317
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

MapReduce systems have great capabilities in processing large amounts of data and have become a research target for governmental, academic and industrial organizations. However, their task management and fault handling policies do not recognize a tacit dichotomy that exists between its inherent two phases (map and reduce). This results in a number of critical issues, such as resource underutilization, prolonged task execution, myopic speculation, and failure amplifications. This project adopts a transformative combination of theoretical analysis, simulation and modeling, and systems design and implementation approaches in order to reconcile the dichotomy of MapReduce. The techniques from this project are potentially impactful to all organizations that deploy MapReduce systems and support Big Data applications from business analytics, social networks, and scientific computing research.Instead of empirical analysis of system behaviors to pinpoint resource management and task scheduling abnormalities, this project takes a different perspective on MapReduce efficiency and resilience, and formulates a Markov chain for the transition of Hadoop MapReduce containers, and a fork-join model for the queueing of map and reduce tasks. These formulations facilitate a theoretical analysis of the dichotomy of MapReduce and help shed light on its impact to asymptotic behaviors of large-scale workloads. This project aims to blend simulation and real system development together, and addresses the myopic speculation caused by dichotomy, liberates the scope of task speculation, and ensures task resilience without failure amplifications. These techniques are developed to enhance MapReduce platforms such as YARN and Spark. Besides the target on MapReduce systems, the research from this project addresses a general issue in distributed analytics environments.
MapReduce系统具有处理大量数据的强大能力,已成为政府、学术和工业组织的研究目标。然而,他们的任务管理和故障处理策略并没有认识到其固有的两个阶段(map和reduce)之间存在的隐性二分法。 这导致了一些关键问题,如资源利用不足,延长任务执行,短视的投机,和失败放大。该项目采用了理论分析,模拟和建模,系统设计和实现方法的变革性组合,以调和MapReduce的二分法。该项目的技术对所有部署MapReduce系统并支持商业分析、社交网络和科学计算研究等大数据应用的组织都具有潜在的影响力。该项目从不同的角度看待MapReduce的效率和弹性,而不是通过实证分析系统行为来查明资源管理和任务调度异常,提出了Hadoop MapReduce容器迁移的马尔可夫链模型和映射与归约任务调度的fork-join模型。这些公式有助于对MapReduce的二分法进行理论分析,并有助于揭示其对大规模工作负载的渐近行为的影响。该项目旨在将仿真和真实的系统开发融合在一起,解决二分法导致的短视推测,解放任务推测的范围,并确保任务弹性而不放大故障。这些技术的开发是为了增强MapReduce平台,如YARN和Spark。除了MapReduce系统的目标之外,该项目的研究还解决了分布式分析环境中的一个普遍问题。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SciDP: Support HPC and Big Data Applications via Integrated Scientific Data Processing
Vidya: Performing Code-Block I/O Characterization for Data Access Optimization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xian-He Sun其他文献

LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching Perspective
LPM:从匹配角度优化并发数据访问模式的系统方法
Applications and Accuracy of the Parallel Diagonal Dominant
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun
Enhancing hybrid parallel file system through performance and space-aware data layout
通过性能和空间感知数据布局增强混合并行文件系统
HARL: Optimizing Parallel File Systems with Heterogeneity-Aware Region-Level Data Layout
HARL:使用异构感知区域级数据布局优化并行文件系统
Application and Accuracy of the Parallel Diagonal Dominant Algorithm
  • DOI:
    10.1016/0167-8191(95)00018-j
  • 发表时间:
    1995-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun

Xian-He Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xian-He Sun', 18)}}的其他基金

OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
  • 批准号:
    2313154
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
  • 批准号:
    2152497
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Frameworks: Collaborative Research: ChronoLog: A High-Performance Storage Infrastructure for Activity and Log Workloads
框架:协作研究:ChronoLog:用于活动和日志工作负载的高性能存储基础架构
  • 批准号:
    2104013
  • 财政年份:
    2021
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Optimization of Memory Architectures: A Foundation Approach
合作研究:SHF:小型:内存架构优化:基础方法
  • 批准号:
    2008907
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
CSR: Small: IRIS: A unified data access framework for the merging of compute-centric and data-centric storage
CSR:小型:IRIS:用于合并以计算为中心和以数据为中心的存储的统一数据访问框架
  • 批准号:
    1814872
  • 财政年份:
    2019
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Framework: Software: NSCI: Collaborative Research: Hermes: Extending the HDF Library to Support Intelligent I/O Buffering for Deep Memory and Storage Hierarchy Systems
框架: 软件:NSCI:协作研究:Hermes:扩展 HDF 库以支持深度内存和存储层次系统的智能 I/O 缓冲
  • 批准号:
    1835764
  • 财政年份:
    2018
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
CRI: II-NEW: A Big Data Professing Infrastructure for Smart Energy Systems
CRI:II-NEW:智能能源系统的大数据专业基础设施
  • 批准号:
    1730488
  • 财政年份:
    2017
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
CSR: Small: Empower Data-Intensive Computing: the integrated data management approach
CSR:小:赋能数据密集型计算:集成数据管理方法
  • 批准号:
    1526887
  • 财政年份:
    2015
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Utilizing Memory Parallelism for High Performance Data Processing
利用内存并行性进行高性能数据处理
  • 批准号:
    1536079
  • 财政年份:
    2015
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了