Collaborative Research: SHF: Small: Optimization of Memory Architectures: A Foundation Approach

合作研究:SHF:小型:内存架构优化:基础方法

基本信息

  • 批准号:
    2008907
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project proposes a foundational approach to model-driven performance optimization of memory systems for modern computer architectures, with the development of a set of memory-architecture optimization methods and tools that are theoretically proven and empirically feasible for modern memory architecture design. The outcome of this project will significantly improve the performance modeling and optimization techniques for designing and evaluating memory architectures in modern computer systems, featuring deep and diverse memory-system hierarchies, heterogeneous memory devices, and complex data-intensive applications, including big-data, cloud and data centers and high-performance computing applications. The findings of this project will improve the content of various courses that the PIs teach. This project plans to proactively recruit minority students by taking advantage of the institutional efforts at IIT and especially at FIU, which is a minority-serving institution. This project will align education and outreach activities with an existing research and education center.The growing disparity between CPU and memory speed causes memory accesses to become a severe performance bottleneck in modern computer architectures. Attempts to solving this “memory wall” problem underpin technological innovations in computer-architecture design over the last two and half decades. The objective of the research is to significantly extend prior memory models and create a practical memory-architecture performance-modeling and optimization framework that can capture the combined effects of data locality, data concurrency, access latency, and multi-tier memory architecture for real applications and on real systems. A simulation-driven approach will be developed with elaborate real-system measurements and performance analyses to examine the potential benefits and identify the performance issues of various memory-architecture designs. More specifically, this project will develop along three research directions: (1) developing theoretical and architectural foundations to address both fundamental questions related to the tiered heterogeneous memory architectures and investigate practical aspects of applying the modeling and optimization framework for various memory architectures; (2) performing model-driven memory-architecture design and optimization for specific memory architectures, including disaggregated memory system, GPU, and deep-memory hierarchy with hybrid memory devices including non-volatile memory; and (3) developing the memory architecture simulator embedded with the performance modeling and optimization framework, and conducting simulation studies and real system measurements to evaluate memory performance, and compare design alternatives and trade-offs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提出了一种模型驱动的现代计算机体系结构的内存系统性能优化的基本方法,开发了一套内存体系结构优化方法和工具,这些方法和工具在理论上得到了验证,并在经验上适用于现代内存体系结构设计。该项目的成果将显着提高性能建模和优化技术,用于设计和评估现代计算机系统中的内存架构,具有深度和多样化的内存系统层次结构,异构内存设备和复杂的数据密集型应用程序,包括大数据,云和数据中心以及高性能计算应用程序。该项目的研究结果将改进方案研究员教授的各种课程的内容。该项目计划利用印度理工学院,特别是为少数民族服务的金融情报机构的机构努力,积极招收少数民族学生。该项目将使教育和推广活动与现有的研究和教育中心保持一致。CPU和内存速度之间日益增长的差距导致内存访问成为现代计算机体系结构中严重的性能瓶颈。 在过去的25年里,解决这个“内存墙”问题的尝试支撑了计算机体系结构设计的技术创新。该研究的目的是显着扩展以前的内存模型,并创建一个实用的内存架构性能建模和优化框架,可以捕获的数据局部性,数据并发性,访问延迟和多层内存架构的综合影响,为真实的应用程序和真实的系统。一个模拟驱动的方法将开发详细的真实系统的测量和性能分析,以检查潜在的好处,并确定各种内存架构设计的性能问题。更具体地说,本项目将沿着沿着三个研究方向发展:(1)发展理论和架构基础,以解决与分层异构存储器架构相关的基本问题,并研究将建模和优化框架应用于各种存储器架构的实际方面;(2)针对特定存储器架构执行模型驱动的存储器架构设计和优化,包括分解存储器系统GPU,以及具有包括非易失性存储器的混合存储器设备的深存储器层次结构;以及(3)开发嵌入有性能建模和优化框架的存储器体系结构模拟器,并进行模拟研究和真实的系统测量以评估存储器性能,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerating Graph Processing With Lightweight Learning-Based Data Reordering
通过基于轻量级学习的数据重新排序加速图形处理
  • DOI:
    10.1109/lca.2022.3151087
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Zou, Mo;Zhang, Mingzhe;Wang, Rujia;Sun, Xian-He;Ye, Xiaochun;Fan, Dongrui;Tang, Zhimin
  • 通讯作者:
    Tang, Zhimin
Premier: A Concurrency-Aware Pseudo-Partitioning Framework for Shared Last-Level Cache
Premier:用于共享末级缓存的并发感知伪分区框架
Performance Modeling and Evaluation of a Production Disaggregated Memory System
A Generalized Model for Modern Hierarchical Memory System
  • DOI:
    10.1109/wsc57314.2022.10015298
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamed Najafi;Jason Liu;Xiaoyang Lu;Xian-He Sun
  • 通讯作者:
    Hamed Najafi;Jason Liu;Xiaoyang Lu;Xian-He Sun
CoPIM: A Concurrency-aware PIM Workload Offloading Architecture for Graph Applications
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xian-He Sun其他文献

LPM: A Systematic Methodology for Concurrent Data Access Pattern Optimization from a Matching Perspective
LPM:从匹配角度优化并发数据访问模式的系统方法
Applications and Accuracy of the Parallel Diagonal Dominant
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun
Enhancing hybrid parallel file system through performance and space-aware data layout
通过性能和空间感知数据布局增强混合并行文件系统
HARL: Optimizing Parallel File Systems with Heterogeneity-Aware Region-Level Data Layout
HARL:使用异构感知区域级数据布局优化并行文件系统
Application and Accuracy of the Parallel Diagonal Dominant Algorithm
  • DOI:
    10.1016/0167-8191(95)00018-j
  • 发表时间:
    1995-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian-He Sun
  • 通讯作者:
    Xian-He Sun

Xian-He Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xian-He Sun', 18)}}的其他基金

OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
  • 批准号:
    2313154
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
  • 批准号:
    2152497
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Frameworks: Collaborative Research: ChronoLog: A High-Performance Storage Infrastructure for Activity and Log Workloads
框架:协作研究:ChronoLog:用于活动和日志工作负载的高性能存储基础架构
  • 批准号:
    2104013
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CSR: Small: IRIS: A unified data access framework for the merging of compute-centric and data-centric storage
CSR:小型:IRIS:用于合并以计算为中心和以数据为中心的存储的统一数据访问框架
  • 批准号:
    1814872
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Framework: Software: NSCI: Collaborative Research: Hermes: Extending the HDF Library to Support Intelligent I/O Buffering for Deep Memory and Storage Hierarchy Systems
框架: 软件:NSCI:协作研究:Hermes:扩展 HDF 库以支持深度内存和存储层次系统的智能 I/O 缓冲
  • 批准号:
    1835764
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRI: II-NEW: A Big Data Professing Infrastructure for Smart Energy Systems
CRI:II-NEW:智能能源系统的大数据专业基础设施
  • 批准号:
    1730488
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience
Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性
  • 批准号:
    1744317
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CSR: Small: Empower Data-Intensive Computing: the integrated data management approach
CSR:小:赋能数据密集型计算:集成数据管理方法
  • 批准号:
    1526887
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Utilizing Memory Parallelism for High Performance Data Processing
利用内存并行性进行高性能数据处理
  • 批准号:
    1536079
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了