Mass/Momentum beyond Classical Gravity and Submanifolds of Higher Codimensions

超越经典引力的质量/动量和更高维数的子流形

基本信息

  • 批准号:
    2104212
  • 负责人:
  • 金额:
    $ 33.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project investigates fundamental problems at the intersection of general relativity, geometry, and differential equations. Einstein’s theory of general relativity describes how spacetime is curved by gravitation. The language of his theory is geometry and the phenomenon is governed by his eponymous equation. Recent advances such as the detection of gravitational waves by LIGO and the observation of black hole images by the Event Horizon Telescope confirmed predictions made by Einstein’s theory, and enhanced our understanding of the global and large scale structure of astrophysical events and objects. The PI's research will apply the latest mathematical breakthroughs in spacetime geometry and Einstein’s equation to obtain the most precise descriptions and measurements of fundamental concepts such as energy and angular momentum on any finitely extended region of the universe. This is essential in understanding the local and fine structure of our universe, with applications in, for example, GPS technology and space exploration, as well as the interaction of gravitating systems such as black hole coalescence. A novel application of the concepts is to space-times beyond four dimensions, which arise in the most viable approach in unifying general relativity and quantum physics. The PI will also study geometric objects of manifold dimensions that live in ambient spaces of even greater dimensions. Examples of such include gigantic data sets that rely on multiple variables subject to multiple constraints. The PI will apply the method of differential equations to investigate the optimal shapes/phases of these objects. The research in the project will be used to promote interest in mathematics among undergraduate students and to provide motivations for research projects. The PI has been engaging himself in educating a diversified body of undergraduate/graduate students and young researchers, and the project will be instrumental for his continued efforts along this direction. In addition, several research problems studied in this proposal are of interest beyond mathematics and there is considerable potential for interdisciplinary cooperations. The PI plans to resolve several outstanding problems related to higher dimensional gravity and submanifolds of higher codimensions by the method of geometric analysis. In particular, the PI will define quasilocal mass and linear/angular momentum near null infinity of higher dimensional spacetimes. Immediate goals include proving positivity/monotonicity theorems for quasilocal mass and rigidity/regularity theorems for general submanifolds of higher codimensions, in addition to establishing conservation laws and supertranslation invariance for linear/angular momentum at null infinity. The proposed research will advance our understanding of nonlinear partial differential systems, such as the Einstein equation and mean curvature equations in higher codimensions, and cast new light on important physical quantities such as gravitational energy and angular momentum in higher dimensional spacetimes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目研究广义相对论、几何学和微分方程交叉的基本问题。爱因斯坦的广义相对论描述了时空是如何被引力弯曲的。他的理论的语言是几何学和现象是由他的epsilon方程。最近的进展,如LIGO探测引力波和事件视界望远镜观测黑洞图像,证实了爱因斯坦理论的预测,并增强了我们对天体物理事件和物体的全球和大尺度结构的理解。PI的研究将应用时空几何学和爱因斯坦方程的最新数学突破,以获得对宇宙任何可扩展区域的能量和角动量等基本概念的最精确描述和测量。这对于理解我们宇宙的局部和精细结构至关重要,例如,GPS技术和空间探索,以及黑洞合并等引力系统的相互作用。这些概念的一个新应用是四维以外的时空,这是在统一广义相对论和量子物理学的最可行的方法中出现的。PI还将研究生活在更大维度环境空间中的多维几何对象。这方面的例子包括依赖于受多个约束的多个变量的巨大数据集。PI将应用微分方程的方法来研究这些物体的最佳形状/相位。该项目的研究将用于促进本科生对数学的兴趣,并为研究项目提供动力。PI一直致力于教育本科生/研究生和年轻研究人员的多元化机构,该项目将有助于他继续努力沿着这一方向。此外,在这项建议中研究的几个研究问题是数学以外的兴趣,有相当大的潜力,跨学科的合作。PI计划通过几何分析的方法来解决与高维引力和高维余维子流形有关的几个突出问题。特别是,PI将定义高维时空的准局部质量和零无穷大附近的线/角动量。近期目标包括证明正性/单调性定理quasilocal质量和刚性/正则性定理一般子流形的更高的余维,除了建立守恒律和超平移不变性的线性/角动量在零无穷大。这项研究将促进我们对非线性偏微分系统的理解,如爱因斯坦方程和更高余维的平均曲率方程,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为值得支持。影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-section continuity of definitions of angular momentum
角动量定义的横截面连续性
  • DOI:
    10.1088/1361-6382/acaa82
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chen, Po-Ning;Paraizo, Daniel E;Wald, Robert M;Wang, Mu-Tao;Wang, Ye-Kai;Yau, Shing-Tung
  • 通讯作者:
    Yau, Shing-Tung
BMS charges without supertranslation ambiguity
BMS 收费无超级翻译歧义
  • DOI:
    10.1007/s00220-022-04390-1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chen, Po-Ning;Wang, Mu-Tao;Wang, Ye-Kai;Yau, Shing-Tung
  • 通讯作者:
    Yau, Shing-Tung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mu-Tao Wang其他文献

Quasi-local mass and isometric embedding with reference to a static spacetime
Gravitational energy seen by quasilocal observers
  • DOI:
    10.1088/0264-9381/28/11/114011
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mu-Tao Wang
  • 通讯作者:
    Mu-Tao Wang
The Minkowski Formula and the Quasi-Local Mass
  • DOI:
    10.1007/s00023-019-00766-7
  • 发表时间:
    2019-02-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Po-Ning Chen;Mu-Tao Wang;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Gauss Maps of the Mean Curvature Flow
  • DOI:
    10.4310/mrl.2003.v10.n3.a2
  • 发表时间:
    2002-09
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Mu-Tao Wang
  • 通讯作者:
    Mu-Tao Wang
Total mass and limits of quasi-local mass at future null infinity
未来零无穷远处的总质量和准局部质量的极限

Mu-Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mu-Tao Wang', 18)}}的其他基金

Problems in General Relativity and Geometric Flows
广义相对论和几何流问题
  • 批准号:
    1810856
  • 财政年份:
    2018
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Continuing Grant
Applications of geometric analysis to general relativity and geometric flows
几何分析在广义相对论和几何流中的应用
  • 批准号:
    1405152
  • 财政年份:
    2014
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Problems in general relativity and geometric flows
广义相对论和几何流中的问题
  • 批准号:
    1105483
  • 财政年份:
    2011
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Geometric analysis problems related to surfaces in mathematical physics
数学物理中与曲面相关的几何分析问题
  • 批准号:
    0904281
  • 财政年份:
    2009
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Geometry and PDE of submanifolds of higher codimensions
高余维子流形的几何和偏微分方程
  • 批准号:
    0605115
  • 财政年份:
    2006
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Continuing Grant
Mean curvature flows in higher codimensions
较高余维中的平均曲率流
  • 批准号:
    0306049
  • 财政年份:
    2003
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant

相似海外基金

Imaging trions and their dynamics in momentum space
动量空间中的三重子及其动力学成像
  • 批准号:
    23K25807
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Electron momentum spectroscopy of radiosensitizers New benchmark data for assessing the theoretical models
放射增敏剂的电子动量谱 用于评估理论模型的新基准数据
  • 批准号:
    EP/Y022297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
A femtosecond beamline for time-resolved momentum microscopy
用于时间分辨动量显微镜的飞秒光束线
  • 批准号:
    LE240100073
  • 财政年份:
    2024
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Imaging trions and their dynamics in momentum space
动量空间中的三重子及其动力学成像
  • 批准号:
    23H01110
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing Human Vision with Orbital Angular Momentum of Light
用光的轨道角动量探测人类视觉
  • 批准号:
    2886175
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Studentship
An Observational Study to Quantify the Impact of Nearshore Processes on Air-Sea Momentum Transfer
量化近岸过程对海气动量传递影响的观测研究
  • 批准号:
    2319548
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
INTeRnal waves In angular momeNtum StratifICation (INTRINSIC)
角动量分层中的内波(内在)
  • 批准号:
    2220343
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
Mobile Observations and quantification of Methane Emissions to inform National Targeting, Upscaling and Mitigation (MOMENTUM)
甲烷排放的移动观测和量化,为国家目标确定、升级和缓解提供信息 (MOMENTUM)
  • 批准号:
    NE/X014649/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Research Grant
Ultrafast dynamics of chiral molecules investigated by time-resolved momentum circular dichroism spectroscopy
通过时间分辨动量圆二色光谱研究手性分子的超快动力学
  • 批准号:
    23H01929
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A direct modeling approach to momentum, heat and mass exchange at the ocean-atmosphere interface at high wind speed
高风速下海洋-大气界面动量、热量和质量交换的直接建模方法
  • 批准号:
    2318816
  • 财政年份:
    2023
  • 资助金额:
    $ 33.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了