Mean curvature flows in higher codimensions

较高余维中的平均曲率流

基本信息

  • 批准号:
    0306049
  • 负责人:
  • 金额:
    $ 11.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACTMEAN CURVATURE FLOW IN HIGHER CODIMENSIONSThe mean curvature flow is the gradient flow of the volumefunctional of submanifolds. The analytic nature is a parabolic system of nonlinear partial differential equations whose stationary phase corresponds to minimal submanifolds. Minimal hypersurfaces and mean curvature flows ofhypersurfaces have been studied extensively for decades but manyapplications in mathematical physics and topology call forunderstanding of the higher codimensional case. This projectproposes to embark on a systematic investigation of minimal submanifolds and mean curvature flows in higher codimensions. Three immediate goals are to understand the minimal surface system in higher codimension, the Lagrangian mean curvature flow in Calabi-Yau manifolds and the deformation of maps between Riemannian manifolds by the mean curvature flow.Minimal surfaces are like soap films, they are surfaces of leastarea. The mean curvature flow is an evolution process which movesTa surface in space in such a way that its area is decreased mostrapidly. This is a very natural yet highly nonlinear process andit models physics phenomena such as the motion of an interface informing metallic alloys. Understanding the behavior of this evolution is important for simplifying and smoothing complicated surfaces in the most efficient way. This process, as a geometric evolution equation, tends to deform a geometric object to its optimal shape. A goal of this project is to apply this process to study certain special surfaces in Calabi-Yau manifolds, the spaces of string theory. It is believedthat underlying structures of Calabi-Yau manifolds are encoded inthese special surfaces, called special Lagrangians. The success ofthis proposal will have important impact on image processing,material science, mathematics physics and other nonlinear problems.
高维中的曲率流平均曲率流是子流形的体积泛函的梯度流。解析性质是一个抛物型的非线性偏微分方程组,其定态相对应于极小子流形。超曲面的极小超曲面和平均曲率流已被广泛研究了几十年,但在数学物理和拓扑学中的许多应用都需要理解高余维情形。本项目旨在系统地研究高次余维中的极小子流形和平均曲率流。三个直接的目标是了解高维极小曲面系统,Calabi-Yau流形上的拉格朗日平均曲率流,以及黎曼流形之间映射的平均曲率流的形变。极小曲面就像肥皂膜,它们是最小面积的曲面。平均曲率流是一个曲面在空间中运动,使其面积减小最快的演化过程。这是一个非常自然但高度非线性的过程,它模拟了物理现象,例如界面的运动,为金属合金提供信息。了解这种演化的行为对于以最有效的方式简化和平滑复杂曲面非常重要。这个过程,作为一个几何演化方程,倾向于使几何对象变形到其最佳形状。这个项目的一个目标是应用这个过程来研究Calabi-Yau流形中的某些特殊曲面,即弦理论空间。人们认为,Calabi-Yau流形的底层结构被编码在这些特殊的表面上,称为特殊拉格朗日。该方案的成功将对图像处理、材料科学、数学物理等非线性问题产生重要影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mu-Tao Wang其他文献

Quasi-local mass and isometric embedding with reference to a static spacetime
Gravitational energy seen by quasilocal observers
  • DOI:
    10.1088/0264-9381/28/11/114011
  • 发表时间:
    2011-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mu-Tao Wang
  • 通讯作者:
    Mu-Tao Wang
The Minkowski Formula and the Quasi-Local Mass
  • DOI:
    10.1007/s00023-019-00766-7
  • 发表时间:
    2019-02-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Po-Ning Chen;Mu-Tao Wang;Shing-Tung Yau
  • 通讯作者:
    Shing-Tung Yau
Gauss Maps of the Mean Curvature Flow
  • DOI:
    10.4310/mrl.2003.v10.n3.a2
  • 发表时间:
    2002-09
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Mu-Tao Wang
  • 通讯作者:
    Mu-Tao Wang
Total mass and limits of quasi-local mass at future null infinity
未来零无穷远处的总质量和准局部质量的极限

Mu-Tao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mu-Tao Wang', 18)}}的其他基金

Mass/Momentum beyond Classical Gravity and Submanifolds of Higher Codimensions
超越经典引力的质量/动量和更高维数的子流形
  • 批准号:
    2104212
  • 财政年份:
    2021
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Problems in General Relativity and Geometric Flows
广义相对论和几何流问题
  • 批准号:
    1810856
  • 财政年份:
    2018
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Applications of geometric analysis to general relativity and geometric flows
几何分析在广义相对论和几何流中的应用
  • 批准号:
    1405152
  • 财政年份:
    2014
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Problems in general relativity and geometric flows
广义相对论和几何流中的问题
  • 批准号:
    1105483
  • 财政年份:
    2011
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Geometric analysis problems related to surfaces in mathematical physics
数学物理中与曲面相关的几何分析问题
  • 批准号:
    0904281
  • 财政年份:
    2009
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Geometry and PDE of submanifolds of higher codimensions
高余维子流形的几何和偏微分方程
  • 批准号:
    0605115
  • 财政年份:
    2006
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

离散分析-分形和图上的分析及其应用
  • 批准号:
    11271011
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
共形几何与液晶问题中的偏微分方程
  • 批准号:
    11201223
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
  • 批准号:
    22K03303
  • 财政年份:
    2022
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flows of metrics induced from mean curvature flow
由平均曲率流导出的度量流
  • 批准号:
    539438-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 11.69万
  • 项目类别:
    University Undergraduate Student Research Awards
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
  • 批准号:
    1906500
  • 财政年份:
    2019
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Continuing Grant
Impact of Curvature-Induced Secondary Flows on Mechanotransduction and Cell Biochemical Signaling in 3D Bioprinted Artery Models with Physiological Inflow
曲率诱导的二次流对具有生理流入的 3D 生物打印动脉模型中的机械转导和细胞生化信号传导的影响
  • 批准号:
    1854415
  • 财政年份:
    2019
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Standard Grant
Study of fundamental properties of deformed Hermitian Yang-Mills connections and line bundle mean curvature flows
变形埃尔米特杨-米尔斯连接和线束平均曲率流的基本性质研究
  • 批准号:
    18K13415
  • 财政年份:
    2018
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research of submanifolds in symmetric spaces and their time evolution along various curvature flows
对称空间子流形及其沿不同曲率流的时间演化研究
  • 批准号:
    18K03311
  • 财政年份:
    2018
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quermassintegral preserving local curvature flows
保持局部曲率流的横向质量积分
  • 批准号:
    400729345
  • 财政年份:
    2018
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Research Fellowships
Curvature flows without singularities
无奇点的曲率流动
  • 批准号:
    336454636
  • 财政年份:
    2017
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Priority Programmes
Harnack inequalities for curvature flows and applications
曲率流的哈纳克不等式及其应用
  • 批准号:
    319506420
  • 财政年份:
    2016
  • 资助金额:
    $ 11.69万
  • 项目类别:
    Research Grants
curvature flows and geometric inequalities
曲率流和几何不等式
  • 批准号:
    498246-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 11.69万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了