CRII: CIF: Automated and Robust Image Watermarking: A Deep Learning Approach

CRII:CIF:自动且鲁棒的图像水印:一种深度学习方法

基本信息

  • 批准号:
    2104267
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Digital image watermarking refers to the process of covertly embedding information into a cover-image and extracting it from it the marked-image; it is used in various application areas ranging from covert communication to authentication to security. Although many handcrafted watermarking schemes are available, these traditional methods run into difficulties due to the limited scope inherent to manual design. To implement image watermarking which adapts to the demands of increasingly diverse application scenarios, this project aims to develop novel schemes based on ideas from deep learning (DL). Two major problems will be addressed, namely (i) minimizing the requirement of domain knowledge, and (ii) achieving robustness without prior knowledge. Outcomes of this project will contribute to a new generation of robust and intelligent watermarking tools that can support cutting-edge applications such as camera scans and secured Internet-of-Things device on-boarding. The integration of the proposed research activities into university curriculum development and other educational programs will contribute to STEM education at various levels. This project seeks to advance the state-of-the-art in DL—based image watermarking through the development of image watermarking schemes that achieve a robust generalization of watermarking rules without requiring information about labeling, the original images, or distortions. The research agenda is structured around two complementary research activities: (i) DL—based automated image watermarking with similarity measures of distance functions, discriminator classifiers, or metric learning; and (ii) DL—based robust image watermarking that explores invariant image latent spaces and automatic rectification. The schemes to be developed will be tested on different applications to confirm their practicality. These research activities are expected to advance our understanding of watermarking on a number of fronts, namely (i) how to design deep learning components (such as architectures and layers) and novel algorithms (through similarity measures) to fully generalize image features and functions for image watermarking processes; (ii) how to design DL components to achieve robustness to different types of distortions in image watermarking, without requiring prior knowledge or adversarial examples; and (iii) how these designs can enable various novel watermarking application scenarios and use cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字图像水印是指将信息隐蔽地嵌入到载体图像中,并从中提取出被标记图像的过程,它被应用于从隐蔽通信到身份认证再到安全等各个领域。虽然许多手工制作的水印方案是可用的,这些传统的方法遇到困难,由于有限的范围内固有的手工设计。为了实现适应日益多样化的应用场景需求的图像水印,该项目旨在基于深度学习(DL)的思想开发新方案。将解决两个主要问题,即(i)最小化领域知识的要求,和(ii)实现鲁棒性没有先验知识。该项目的成果将有助于开发新一代强大而智能的水印工具,这些工具可以支持相机扫描和安全的物联网设备加载等尖端应用。将拟议的研究活动纳入大学课程开发和其他教育计划将有助于各级STEM教育。该项目旨在通过开发图像水印方案来推进基于DL的图像水印的最新技术,该图像水印方案实现了水印规则的鲁棒概括,而不需要关于标签、原始图像或失真的信息。研究议程围绕两个互补的研究活动:(i)基于DL的自动图像水印与距离函数,模糊分类器或度量学习的相似性度量;和(ii)基于DL的鲁棒图像水印,探索不变的图像潜在空间和自动纠正。将在不同的应用程序中测试将开发的计划,以确认其实用性。这些研究活动预计将在多个方面促进我们对水印的理解,即(i)如何设计深度学习组件(如架构和层)和新颖的算法(通过相似性度量)来完全概括图像特征和功能以用于图像水印处理;(ii)如何设计DL分量以实现对图像水印中的不同类型的失真的鲁棒性,而不需要先验知识或对抗性示例;该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FOD-A: A Dataset for Foreign Object Debris in Airports
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Travis J. E. Munyer;Pei-Chi Huang;Chenyu Huang;Xin Zhong
  • 通讯作者:
    Travis J. E. Munyer;Pei-Chi Huang;Chenyu Huang;Xin Zhong
A Deep Learning-based Audio-in-Image Watermarking Scheme
An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks
  • DOI:
    10.1109/tmm.2020.3006415
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Zhong, Xin;Huang, Pei-Chi;Shih, Frank Y.
  • 通讯作者:
    Shih, Frank Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Zhong其他文献

In situ formation of zinc phthalate as a highly dispersed β-nucleating agent for mechanically strengthened isotactic polypropylene
原位形成邻苯二甲酸锌作为机械增强等规聚丙烯的高度分散β-成核剂
  • DOI:
    10.1016/j.cej.2018.10.108
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Qin Wei;Xin Zhong;Pan Chunmeng;Sun Shibao;Jiang Xiaofeng;Zhao Shicheng
  • 通讯作者:
    Zhao Shicheng
Genetic Diversity and Population Structure of Gynaephora qinghaiensis in Yushu Prefecture, Qinghai Province Based on the Mitochondrial COI Gene
基于线粒体COI基因的青海玉树地区青海白莲花遗传多样性及种群结构
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Haizhen Wang;Xin Zhong;Huafeng Lin;Shaosong Li;Jiequn Yi;Guren Zhang;Xin Liu;Li Gu
  • 通讯作者:
    Li Gu
Facile fabrication of lilium pollen-like organosilica particles
百合花粉状有机二氧化硅颗粒的简易制备
  • DOI:
    10.1021/acs.langmuir.9b02627
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yang Huayu;Lu Xin;Xin Zhong
  • 通讯作者:
    Xin Zhong
Assessment of the benthic ecological status in the adjacent waters of Yangtze River Estuary using marine biotic indices
利用海洋生物指数评价长江口邻近海域底栖生态状况
  • DOI:
    10.1016/j.marpolbul.2018.10.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Baochao Qiu;Xin Zhong;Xiaoshou Liu
  • 通讯作者:
    Xiaoshou Liu
Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene
金属苯基膦酸盐对等规聚丙烯非等温结晶及性能的影响

Xin Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
  • 批准号:
    JCZRQN202501187
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
  • 批准号:
    2327905
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
  • 批准号:
    2413622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了