Pseudoholomorphic Invariants of Contact Manifolds
接触流形的伪全纯不变量
基本信息
- 批准号:2104411
- 负责人:
- 金额:$ 25.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symplectic and contact structures first arose in the study of classical mechanical systems, allowing one to describe the time evolution of complex systems such as planetary motion. In mathematics, certain geometric shapes with these additional structures are known as symplectic or contact manifolds. Solutions of classical mechanical systems can be interpreted in terms of flow lines of mathematical objects known as Hamiltonian or Reeb vector fields on a symplectic or contact manifold, respectively. Understanding the evolution and distinguishing transformations of these systems led to the development of global invariants of symplectic and contact structures, which shed light on the interconnectedness of dynamics, geometry, and topology. The PI plans to build on her work in providing foundations and applications of contact invariants. The PI will continue and expand her efforts to increase the access and success of underrepresented students in pure and applied mathematics. With the Rice Association for Women in Mathematics Chapter, she plans to organize a weekly Math Night at Rice University. She also plans to conduct (jointly with two other professors) two national studies to delineate forms of antiracism in academic advising in STEM fields and to examine the effect of academic advisors' practices on BIPOC (Black,Indigenous, and people of color) student psychological experiences and outcomes, and construct a set of best practices and effective behaviors in academic advising. To train future generations, the PI will co-organize two international conferences with professional development programming for junior mathematicians and will offer research opportunities for undergraduates. She will continue to advise PhD students and mentor postdoctoral researchers. The project concerns pseudoholomorphic curve based Floer theoretic invariants of contact and symplectic manifolds. These pseudoholomorphic curves are equivalence classes of solutions to a nonlinear Cauchy-Riemann equation which interpolate between closed periodic orbits of either a Hamiltonian or Reeb vector field. The PI will employ direct geometric methods to extend the transversality theory for the associated moduli spaces of pseudoholomorphic curves while isolating and accounting for “errant” phenomena, primarily through the use of obstruction bundle gluing methods. The primary goals of this project are to provide foundations and refine structural aspects of nonequivariant, and (circle) equivariant contact homology, including the development of product structures and isomorphisms with symplectic homology. By exploring contributions from obstruction bundle gluing, she also plans to provide foundations for Legendrian contact homology in certain closed contact 3-manifolds. The secondary goals of this project are to provide applications to dynamics, free loop spaces, and symplectic embedding problems, in part through developing computational methods for embedded contact homology of Seifert fiber spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辛结构和接触结构首先出现在经典力学系统的研究中,允许人们描述复杂系统的时间演化,如行星运动。 在数学中,具有这些附加结构的某些几何形状被称为辛流形或接触流形。经典力学系统的解可以用数学对象的流线来解释,这些数学对象分别被称为辛流形或接触流形上的哈密尔顿向量场或里布向量场。 理解这些系统的演化和区别变换导致了辛结构和接触结构的全局不变量的发展,这揭示了动力学,几何学和拓扑学的相互联系。PI计划在她的工作基础上提供接触不变量的基础和应用。 PI将继续并扩大她的努力,以增加在纯数学和应用数学的代表性不足的学生的访问和成功。她计划与赖斯妇女数学分会一起在赖斯大学组织每周一次的数学之夜。她还计划进行(与其他两名教授联合)两项全国性研究,以界定在STEM领域的学术咨询反种族主义的形式,并研究学术顾问的做法对BIPOC(黑人,土著和有色人种)学生心理体验和结果的影响,并构建一套最佳实践和有效的行为在学术咨询。为了培养后代,PI将共同组织两次国际会议,为初级数学家提供专业发展规划,并为本科生提供研究机会。她将继续为博士生提供建议,并指导博士后研究人员。该项目涉及拟全纯曲线的接触和辛流形的弗洛尔理论不变量。这些伪全纯曲线是一个非线性Cauchy-Riemann方程的解的等价类,该方程内插在Hamilton向量场或Reeb向量场的闭合周期轨道之间。PI将采用直接几何方法来扩展伪全纯曲线的相关模空间的横截性理论,同时隔离和解释“错误”现象,主要是通过使用障碍束胶合方法。该项目的主要目标是提供基础和完善非等变和(圈)等变接触同源的结构方面,包括产品结构和同构与辛同源的发展。通过探索障碍束胶合的贡献,她还计划为某些闭接触3流形中的勒让德接触同调提供基础。该项目的第二个目标是提供应用程序的动力学,自由回路空间,和辛嵌入问题,部分通过开发计算方法嵌入接触同源的塞弗特纤维spaces.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symplectic embeddings of four-dimensional polydisks into half integer ellipsoids
四维多圆盘辛嵌入半整数椭球
- DOI:10.1007/s11784-022-00981-6
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Digiosia, L.;Nelson, J.;Ning, H.;Weiler, M.;Yang, Y.
- 通讯作者:Yang, Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joanna Nelson其他文献
269 – Naegleria fowleri
269 – 福氏耐格里阿米巴
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Joanna Nelson;Upinder Singh - 通讯作者:
Upinder Singh
Joanna Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joanna Nelson', 18)}}的其他基金
CAREER: Floer theories and Reeb dynamics of contact manifolds
职业:Floer 理论和接触流形的 Reeb 动力学
- 批准号:
2142694 - 财政年份:2022
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Moduli Problems in Contact Geometry
接触几何中的模量问题
- 批准号:
1840723 - 财政年份:2018
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Moduli Problems in Contact Geometry
接触几何中的模量问题
- 批准号:
1810692 - 财政年份:2018
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
相似海外基金
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 25.81万 - 项目类别:
Fellowship
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 25.81万 - 项目类别:
Research Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Ramsey-type problems from graph-invariants
图不变量的拉姆齐型问题
- 批准号:
23K03204 - 财政年份:2023
- 资助金额:
$ 25.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant