Quantum Topology beyond Semi-Simplicity

超越半简单性的量子拓扑

基本信息

  • 批准号:
    2104497
  • 负责人:
  • 金额:
    $ 32.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Inspired by physics, mathematics has successfully provided the background and language for most of the sophisticated areas of modern physics. This project aims to create new algebraic and geometric tools to formulate ideas and methods of quantum physics in a precise mathematical way. Specifically, the theory of quantum groups associated with Lie algebras has been widely and productively used in low-dimensional topology, and in particular, with the creation of quantum invariants. Within this context, the Principal Investigator (PI) and his collaborators have offered new systematic strategies to define re-normalized quantum invariants arising from non-semi-simple categories. The focus of this grant is to develop a framework for many of the quantum invariants coming from both semi-simple and non-semi-simple categories. The unique properties of such a framework opens the door to new research avenues in algebra, topology, geometry, mathematical physics, and related areas of mathematics. The broader impacts of this grant address two main categories: mentoring and outreach. Throughout the project, the PI will advise graduate students and postdocs on projects related to the main objectives of the grant. The PI has co-organized many conferences and a workshop and will continue such outreach with the aim of developing communication and collaborative research with other mathematicians, as well as fostering broader applications of the work of this grant.This grant considers four types of invariants arising from non-semi-simple categories: Hennings, Kuperberg, Reshetikhin-Turaev re-normalized Quantum Invariants (RQIs) and Turaev-Viro RQIs. All of these invariants have unique features and strengths. In particular, Hennings and Kuperberg invariants are defined using the structure of Hopf algebras (and thus have many examples) but have certain vanishings which do not allow extensions to full TQFTs; the RQIs are quite powerful and their definitions are based on representation theory making their existence for some significant examples elusive. This project will generalize and re-normalize both Hennings and Kuperberg invariants and show that the new invariants lead to TQFTs with additional data (overcoming the vanishing obstruction). Furthermore, the PI will construct a general framework which relates the Hennings and Kuperberg type invariants to the previously defined Reshetikhin-Turaev and Turaev-Viro RQIs, allowing a unification of the strengths of all four invariants. The PI will use this framework to advance and draw connections with Chern-Simons theory with complex (super) groups and Levin-Wen models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受物理学的启发,数学成功地为现代物理学的大多数复杂领域提供了背景和语言。 该项目旨在创建新的代数和几何工具,以精确的数学方式阐述量子物理学的思想和方法。 具体来说,与李代数相关的量子群理论已经广泛而富有成效地用于低维拓扑,特别是量子不变量的创建。 在此背景下,主要研究者(PI)和他的合作者提供了新的系统策略来定义从非半简单范畴产生的重新归一化的量子不变量。 这项资助的重点是为来自半简单和非半简单类别的许多量子不变量开发一个框架。 这种框架的独特性质为代数、拓扑、几何、数学物理和相关数学领域的新研究途径打开了大门。 这一赠款的更广泛影响涉及两个主要类别:辅导和外联。 在整个项目中,PI将为研究生和博士后提供与赠款主要目标相关的项目建议。 PI已经共同组织了许多会议和研讨会,并将继续与其他数学家发展沟通和合作研究的目的,以及促进更广泛的应用该补助金的工作这样的外联。该补助金考虑了四种类型的不变量产生的非半简单的类别:亨宁斯,Kuperberg,Reshetikhin-Turaev重新规范化的量子不变量(RQI)和Turaev-Viro RQI。所有这些不变量都具有独特的功能和优势。特别是Hennings和Kuperberg不变量是使用Hopf代数的结构定义的(因此有许多例子),但有某些不允许扩展到完整TQFT的消失; RQI是相当强大的,它们的定义是基于表示论,使得它们的存在对于一些重要的例子难以捉摸。这个项目将推广和重新规范化Hennings和Kuperberg不变量,并表明新的不变量导致TQFT与额外的数据(克服消失的障碍)。此外,PI将构建一个通用框架,将Hennings和Kuperberg类型不变量与先前定义的Reshetikhin-Turaev和Turaev-Viro RQI联系起来,从而统一所有四个不变量的强度。PI将使用这个框架来推进并与具有复杂(超级)群和Levin-Wen模型的Chern-Simons理论建立联系。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Geer其他文献

Non semi-simple TQFTs from unrolled quantum $sl(2)$
来自展开量子 $sl(2)$ 的非半简单 TQFT
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Blanchet;F. Costantino;Nathan Geer;Bertrand Patureau
  • 通讯作者:
    Bertrand Patureau
Ambidextrous objects and trace functions for nonsemisimple categories
非半简单类别的灵巧对象和跟踪函数
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Geer;J. Kujawa;Bertrand Patureau
  • 通讯作者:
    Bertrand Patureau
Polynomial 6j–symbols and states sums
多项式 6j – 符号和状态和
  • DOI:
    10.2140/agt.2011.11.1821
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Nathan Geer;Bertrand Patureau
  • 通讯作者:
    Bertrand Patureau
Logarithmic Hennings invariants for restricted quantum ??(2)
受限量子的对数亨宁斯不变量 ??(2)
MULTIVARIABLE LINK INVARIANTS ARISING FROM LIE SUPERALGEBRAS OF TYPE I
由 I 型李超代数产生的多变量链接不变量
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Geer;Bertrand Patureau
  • 通讯作者:
    Bertrand Patureau

Nathan Geer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Geer', 18)}}的其他基金

FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
  • 批准号:
    1664387
  • 财政年份:
    2017
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
CAREER: The geometry and physics of non-semi-simple quantum topology
职业:非半简单量子拓扑的几何和物理
  • 批准号:
    1452093
  • 财政年份:
    2015
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
Quantum topology, via re-normalized invariants
量子拓扑,通过重新归一化不变量
  • 批准号:
    1308196
  • 财政年份:
    2013
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Vanishing Quantum Dimensions in Low-dimensional Topology
低维拓扑中消失的量子维度
  • 批准号:
    1007197
  • 财政年份:
    2010
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Low-Dimensional Topology from a "Super" View Point
“超”视点的低维拓扑
  • 批准号:
    0968279
  • 财政年份:
    2009
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Low-Dimensional Topology from a "Super" View Point
“超”视点的低维拓扑
  • 批准号:
    0706725
  • 财政年份:
    2007
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
  • 批准号:
    2340664
  • 财政年份:
    2024
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了