Development of a Multi-Cue Biomaterial for Traumatic Tissue Injury
用于创伤性组织损伤的多线索生物材料的开发
基本信息
- 批准号:2104639
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractBiomaterials have immense potential for a countless number of applications, but limitations currently exist on the integration and adaptive functionality of the materials. For instance, there are a large number of events and signals that occur following a traumatic injury, including electrical, chemical, and physical signals that are used to communicate with cells and the surrounding environment that current materials are unable to replicate. Therefore, this project seeks to develop a novel biomaterial scaffold with customized chemical, electrical and physical signaling to be provided to the injury site. Electrical signaling will be provided by movement of the scaffold, called piezoelectricity, or by targeted “on-demand” ultrasound. This tunable, piezoelectric material represents a leap forward to materials that can better reproduce the requirements necessary of a biomaterial. The multi-functional, piezoelectric biomaterial will be fabricated, systematically characterized, and developed into a three-dimensional construct for future applications such as nerve regeneration. This study will greatly aid in the development and characterization of piezoelectric biomaterials for the future, and particularly multi-function materials capable of providing customizable signals. In addition, this work seeks to broaden interest in science by hosting a workshop for local Cincinnati high school students where students will have an opportunity to learn about piezoelectricity and material science. Overall, by developing robust biomaterials with enhanced signaling capabilities that better replicate the native environment, this class of material has the potential to revolutionize personalized medicine and deliver countless future therapies from the lab into the clinic.Technical AbstractNovel biomaterials capable of delivering the required signals to both cells and the microenvironment to replace or restore tissue in injury and disease states remain challenging to develop. A new class of multiple-cue material is greatly needed for a variety of applications including tissue engineered therapies, in vitro models of injury and disease, and fundamental studies of cell and tissue. To address this challenge for more relevant materials, this project will develop a biomaterial capable of delivering the relevant electrical, chemical, and physical signals to cells and the microenvironment to promote regeneration and integration of tissue. To accomplish this, the research project will: 1) Electrospin an aligned, biocompatible poly(vinylidene fluoride-co-trifluoroethylene)(PVDF-TrFE) piezoelectric, nanofiber scaffold with a high surface area and porosity that is functionalized with tissue-specific, decellularized extracellular matrix (ECM). 2) Quantitatively determine the electric potential of the scaffold resulting from mechanical deformation on the cellular and tissue level, in addition to quantification of location specific ultrasonic stimulation, which can be applied on demand as the scaffolds generate electric current in response to mechanical deformations. The resulting neuronal and Schwann cell phenotypic response to biomaterials and electric current produced will also be examined. 3) Utilize the electrospun PVDF-TrFE mesh scaffold to create 3D guidance conduits to address wound repair in nerve injury and assess the mechanics and total piezoelectricity of conduits while maintaining biocompatibility with cells. In the long-term, this research develops a transformative class of biomaterial and provides a mechanistic understanding of piezoelectric polymers and their effect on cells and tissue.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要生物材料在无数的应用中具有巨大的潜力,但目前在材料的集成和自适应功能上存在限制。例如,有大量的事件和信号发生在创伤性损伤之后,包括用于与细胞和周围环境通信的电,化学和物理信号,这些信号是当前材料无法复制的。因此,该项目旨在开发一种新型生物材料支架,其具有定制的化学,电学和物理信号,可提供给损伤部位。电信号将通过支架的运动提供,称为压电,或通过有针对性的“按需”超声。这种可调的压电材料代表了材料的飞跃,可以更好地再现生物材料的必要要求。多功能压电生物材料将被制造,系统地表征,并开发成三维结构,用于未来的应用,如神经再生。这项研究将大大有助于未来压电生物材料的开发和表征,特别是能够提供可定制信号的多功能材料。此外,这项工作旨在通过为当地辛辛那提高中学生举办研讨会来扩大对科学的兴趣,学生将有机会学习压电和材料科学。总的来说,通过开发具有增强的信号传导能力,更好地复制天然环境的强大的生物材料,这类材料有可能彻底改变个性化医疗,并提供无数的未来疗法从实验室到clinic.Technical AbstractNovel生物材料能够提供所需的信号到细胞和微环境,以取代或恢复组织损伤和疾病状态仍然具有挑战性的发展。一类新的多线索材料是非常需要的各种应用,包括组织工程治疗,损伤和疾病的体外模型,以及细胞和组织的基础研究。为了应对这一挑战,该项目将开发一种生物材料,能够向细胞和微环境提供相关的电,化学和物理信号,以促进组织的再生和整合。为了实现这一目标,该研究项目将:1)静电纺丝对齐,生物相容性聚(偏二氟乙烯-共-三氟乙烯)(PVDF-TrFE)压电支架,具有高表面积和孔隙率,用组织特异性,脱细胞外基质(ECM)功能化。2)定量测定由细胞和组织水平上的机械变形引起的支架的电势,除了位置特异性超声刺激的定量之外,其可以根据需要应用,因为支架响应于机械变形而产生电流。还将检查所产生的神经元和雪旺细胞对生物材料和产生的电流的表型反应。3)利用电纺PVDF-TrFE网状支架创建3D引导导管,以解决神经损伤中的伤口修复问题,并评估导管的力学和总压电性,同时保持与细胞的生物相容性。从长远来看,该研究开发了一种变革性的生物材料,并提供了对压电聚合物及其对细胞和组织影响的机械理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Harris其他文献
Contemporary medical therapy, sex-specific characteristics, and outcomes of patients with non-ischemic cardiomyopathy: a prespecified interim analysis of the BIO-LIBRA study
- DOI:
10.1016/j.eclinm.2025.103337 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:10.000
- 作者:
Valentina Kutyifa;Luigi Di Biase;Karthik Venkatesh Prasad;Vilma Torres;Aaron Hesselson;Craig J. McCotter;Gregory Harris;Karlene Cox;Susan Schleede;E. Kevin Heist;Scott McNitt;Mary W. Brown;Crystal Miller;Christopher A. Beck;Jeanne Poole;Luigi Di Biase;Karthik Prasad;David Frazier;Vilma Torres;Kristin Ellison;Gioia Turitto - 通讯作者:
Gioia Turitto
Progress toward automating the application of a cerebrum parcellation method for tissue-classified human in vivo MRI
- DOI:
10.1016/s1053-8119(00)91459-9 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Gregory Harris;Vincent Magnotta;Benedicto Crespo-Facorro;Jae-Jin Kim;Ruth Spinks;Daniel O'Leary;Nancy Andreasen - 通讯作者:
Nancy Andreasen
LEFT ATRIAL APPENDAGE OCCLUSION: THE ROAD NOT TAKEN
- DOI:
10.1016/s0735-1097(20)33865-1 - 发表时间:
2020-03-24 - 期刊:
- 影响因子:
- 作者:
Irfan Siddiqui;Harish Devineni;David Frazier;Gregory Harris - 通讯作者:
Gregory Harris
TCT-55 Outcomes of Transfemoral Bivalirudin are Equivalent to Transradial PCI. "Old Dogs Don't Need to Learn New Tricks"
- DOI:
10.1016/j.jacc.2013.08.787 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Sundeep Adusumalli;Gregory Harris;Arjun Chagarlamudi;Gary M. Nash;Adeel Siddiqui;Nikhil Paladugu;Ramesh B. Daggubati - 通讯作者:
Ramesh B. Daggubati
TCT-301 Is there a role for BivaliRUdin in Transradial Percutaneous Coronary Intervention? - The BRUT PCI Study
- DOI:
10.1016/j.jacc.2013.08.1037 - 发表时间:
2013-10-29 - 期刊:
- 影响因子:
- 作者:
Sundeep Adusumalli;Gregory Harris;Arjun Chagarlamudi;Gary M. Nash;Adeel Siddiqui;Nikhil Paladugu;Ramesh B. Daggubati - 通讯作者:
Ramesh B. Daggubati
Gregory Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246008 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246006 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246009 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246004 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246007 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
- 批准号:
2246005 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Multi-Cue Facial Restoration (McFAR) for Recognition and Identification
I-Corps:用于识别和识别的多线索面部修复 (McFAR)
- 批准号:
2224289 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
REU: Engineered Platforms for Control of Multi-cue Migration
REU:用于控制多线索迁移的工程平台
- 批准号:
10809473 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别: