Collaborative Research: CDS&E: Multifidelity Uncertainty Quantification Through Model Ensembles and Repositories
合作研究:CDS
基本信息
- 批准号:2104831
- 负责人:
- 金额:$ 25.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Numerical simulations are increasingly used in clinical research and practice for diagnosis and treatment planning in cardiovascular disease, creating new demand for reliable simulation and analysis tools. Quantification of uncertainty in these simulations is crucial to increased clinical adoption but has previously been largely disregarded due to its excessive computational cost and complexity. To address these challenges, the project leverages a new class of multi-fidelity Monte Carlo estimators for direct and inverse problems, designed to mitigate computational complexity through the solution of a large number of inexpensive low-fidelity surrogates. It demonstrates the proposed approach in full-scale clinical problems including multiple uncertainty sources at a reasonable computational budget. The project’s main objective is to create an end-to-end advanced cyberinfrastructure ecosystem for uncertainty quantification (direct problem) and parameter estimation (inverse problem) in cardiovascular models incorporating realistic sources of uncertainty, able to leverage arbitrary low-fidelity models through advanced Monte Carlo estimators, while drastically reducing computational cost and complexity. The project’s interdisciplinary team is synergizing computational modeling, cardiovascular physiology, UQ and open-source software towards making UQ tractable in full-scale 3D cardiovascular simulations, leveraging multi-fidelity estimators for the solution of both direct and inverse problems. The project will produce seamless cyberinfrastructure linking two well-regarded open-source packages, Dakota and SimVascular, with sizable user communities.The project is creating new cyberinfrastructure ecosystems for large-scale UQ tasks. Dissemination to industry/academia is performed through SimVascular, a leading open-source platform for cardiovascular modeling. It will leverage SimVascular and the proposed multi-fidelity estimators to create hands-on teaching material for graduate and undergraduate courses. Although the project focuses on cardiovascular modeling, its results are directly applicable to other engineering problems. The PIs will organize minisymposia and workshops at national conferences. They will lead outreach activities to local K-12 schools to attract girls and underrepresented minority (URM) students to STEM. The PIs will mentor URM summer students through the SURF program and women students through the Women in Mathematics, Scientific Computing and Engineering (WiMSCE) group at Stanford.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数值模拟越来越多地用于心血管疾病的诊断和治疗计划的临床研究和实践中,为可靠的模拟和分析工具创造了新的需求。量化这些模拟中的不确定性对于增加临床采用至关重要,但由于其过高的计算成本和复杂性,以前在很大程度上被忽视。为了应对这些挑战,该项目利用一类新的多保真度蒙特卡罗估计器来解决正问题和逆问题,旨在通过解决大量廉价的低保真度替代品来降低计算复杂性。它证明了所提出的方法在全面的临床问题,包括多个不确定性来源在一个合理的计算预算。该项目的主要目标是创建一个端到端的先进网络基础设施生态系统,用于心血管模型中的不确定性量化(直接问题)和参数估计(逆问题),包括现实的不确定性来源,能够通过先进的蒙特卡罗估计器利用任意低保真度模型,同时大幅降低计算成本和复杂性。该项目的跨学科团队正在协同计算建模,心血管生理学,UQ和开源软件,使UQ在全尺寸3D心血管模拟中易于处理,利用多保真度估计器解决正问题和逆问题。该项目将产生无缝的网络基础设施,将两个备受推崇的开源软件包Dakota和SimVascular与相当大的用户社区连接起来。该项目正在为大规模的UQ任务创建新的网络基础设施生态系统。通过SimVascular(一个领先的心血管建模开源平台)向行业/学术界进行传播。它将利用SimVascular和拟议的多保真度估计器为研究生和本科生课程创建实践教学材料。虽然该项目侧重于心血管建模,但其结果可直接应用于其他工程问题。PI将在国家会议上组织小型座谈会和讲习班。他们将领导当地K-12学校的外联活动,以吸引女孩和代表性不足的少数民族(URM)学生参加STEM。PI将通过SURF计划指导URM暑期学生,并通过斯坦福大学的女性数学,科学计算和工程(WiMSCE)小组指导女性学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
软组织显式分布式结构分析中的数据驱动同步避免算法
- DOI:10.1007/s00466-022-02248-w
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Tong, Guoxiang Grayson;Schiavazzi, Daniele E.
- 通讯作者:Schiavazzi, Daniele E.
Multifidelity data fusion in convolutional encoder/decoder networks
- DOI:10.1016/j.jcp.2022.111666
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Lauren Partin;G. Geraci;A. Rushdi;M. Eldred;D. Schiavazzi
- 通讯作者:Lauren Partin;G. Geraci;A. Rushdi;M. Eldred;D. Schiavazzi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniele Schiavazzi其他文献
CT FFR Can Accurately Identify Culprit Lesions In Aorto-Iliac Occlusive Disease Using Minimally-Invasive Techniques
- DOI:
10.1016/j.avsg.2016.05.030 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Erin Ward;Daniele Schiavazzi;Divya Sood;John Lane;Erik Owens;Alison Marsden;Andrew Barleben - 通讯作者:
Andrew Barleben
Daniele Schiavazzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniele Schiavazzi', 18)}}的其他基金
CAREER: Bayesian Inference Networks for Model Ensembles
职业:模型集成的贝叶斯推理网络
- 批准号:
1942662 - 财政年份:2020
- 资助金额:
$ 25.49万 - 项目类别:
Continuing Grant
Robust Diagnosis in Electronic Health Records Integrating Physics-based Missing Data Multiple Imputation, Fast Inference for Hemodynamic Models, and Differential Privacy.
电子健康记录中的稳健诊断集成了基于物理的缺失数据多重插补、血流动力学模型的快速推理和差分隐私。
- 批准号:
1918692 - 财政年份:2019
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 25.49万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 25.49万 - 项目类别:
Training Grant