CAREER: Bayesian Inference Networks for Model Ensembles
职业:模型集成的贝叶斯推理网络
基本信息
- 批准号:1942662
- 负责人:
- 金额:$ 44.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integration of cardiovascular models, expert opinion and clinical measurements in a coherent system for probabilistic reasoning represents the next frontier of model-aided diagnostics to inform treatment in personalized medicine. However, several fundamental limitations must be addressed: (1) deterministic models are inadequate to characterize the effect of uncertainty in various properties of the cardiovascular system; (2) cardiovascular models are computationally expensive and therefore a stochastic treatment of these models may be too computationally expensive; (3) predictive models are needed in complex decision workflows to directly answer questions of clinical relevance in justifiable, probabilistic terms. This project proposes key advances in three complementary areas that are essential to make this next generation of model-aided diagnostics a reality: (1) highly scalable computational methods able to efficiently handle multiple instances of cardiovascular models with uncertain parameters; (2) new Monte Carlo estimators that leverage computationally inexpensive low fidelity surrogates; (3) new inference systems based on variables organized in networks, accommodating non-linear hemodynamic models, expert opinion and data. Since cardiovascular disease is the leading causes of death worldwide, this project serves the national interest by advancing the national health, prosperity and welfare, as stated by NSF's mission. The proposed research at the interface of computational mathematics and physiology offers an ideal framework to educate a diverse and globally competitive STEM workforce at the high school, undergraduate and graduate levels. Workshops and mini-symposia will also facilitate the exchange of ideas on stochastic cardiovascular modeling within the scientific community. Computational models are increasingly being adopted to inform treatment in personalized medicine but innovation in model-based diagnostics is still hindered by three main problems: (1) deterministic simulations, i.e., simulations with certain outputs providing a false sense of confidence; (2) stochastic simulations are typically associated with a dramatic increase in computational cost; (3) current paradigms in uncertainty quantification (UQ) need generalization to provide coherent inference frameworks combining physics-based models, expert opinion, observational data and experiments. Thus, the main goal of this CAREER proposal is to develop the next generation of efficient computational tools to accelerate inference from models and data in computational hemodynamics as well as in a wide range of applications. This goal is achieved through the following objectives: (1) development of efficient ensemble solvers for hemodynamics running on modern CPU/GPU hybrid architectures; (2) research in generalized approximate control variate Monte Carlo estimators to drastically reduce the time required to solve direct and inverse problems in uncertainty analysis; (3) extend Bayesian Networks combining numerical models, expert opinion and data in a coherent inference framework. This research will provide the scientific basis to construct the first model-based inference framework including experimental evidence, expert opinion, and to develop systems directly applicable to the clinical decision making process. Two prototype systems will be finally developed, with a focus on applications to pediatric surgery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将心血管模型、专家意见和临床测量整合到一个用于概率推理的连贯系统中,代表了模型辅助诊断的下一个前沿,以告知个性化医疗中的治疗。然而,必须解决几个基本限制:(1)确定性模型不足以表征心血管系统的各种属性中的不确定性的影响;(2)心血管模型在计算上是昂贵的,因此这些模型的随机处理在计算上可能太昂贵;(3)在复杂的决策工作流程中需要预测模型,以合理的概率直接回答临床相关性问题。该项目提出了三个互补领域的关键进展,这些领域对于实现下一代模型辅助诊断至关重要:(1)高度可扩展的计算方法,能够有效地处理具有不确定参数的心血管模型的多个实例;(2)利用计算成本低廉的低保真度替代品的新Monte Carlo估计器;(3)新的推理系统,基于以网络组织的变量,适应非线性血液动力学模型、专家意见和数据。由于心血管疾病是世界范围内死亡的主要原因,该项目通过促进国家健康,繁荣和福利来服务于国家利益,正如NSF的使命所述。在计算数学和生理学的接口拟议的研究提供了一个理想的框架,以教育在高中,本科和研究生水平的多元化和全球竞争力的干劳动力。研讨会和小型研讨会也将促进科学界关于随机心血管建模的思想交流。越来越多地采用计算模型来告知个性化医学中的治疗,但是基于模型的诊断的创新仍然受到三个主要问题的阻碍:(1)确定性模拟,即,随机模拟通常与计算成本的急剧增加相关联;(3)当前不确定性量化(UQ)的范例需要泛化以提供结合基于物理的模型、专家意见、观测数据和实验的连贯推理框架。因此,本CAREER提案的主要目标是开发下一代高效的计算工具,以加速计算血液动力学模型和数据的推断以及广泛的应用。这一目标是通过以下目标实现的:(1)开发在现代CPU/GPU混合架构上运行的血液动力学的高效系综求解器;(2)研究广义近似控制变量蒙特卡罗估计器,以大幅减少在不确定性分析中求解正问题和逆问题所需的时间;(3)在一个连贯的推理框架中,将数值模型、专家意见和数据相结合,扩展贝叶斯网络。本研究将为构建第一个包含实验证据、专家意见的基于模型的推理框架,以及开发直接适用于临床决策过程的系统提供科学依据。最终将开发两个原型系统,重点是儿科手术的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multifidelity data fusion in convolutional encoder/decoder networks
- DOI:10.1016/j.jcp.2022.111666
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Lauren Partin;G. Geraci;A. Rushdi;M. Eldred;D. Schiavazzi
- 通讯作者:Lauren Partin;G. Geraci;A. Rushdi;M. Eldred;D. Schiavazzi
Variational inference with NoFAS: Normalizing flow with adaptive surrogate for computationally expensive models
使用 NoFAS 进行变分推理:使用自适应代理对计算成本较高的模型进行流标准化
- DOI:10.48550/arxiv.2108.12657
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Wang, Yu;Liu, Fang;Schiavazzi, Daniele E.
- 通讯作者:Schiavazzi, Daniele E.
AdaAnn: Adaptive Annealing Scheduler for Probability Density Approximation
- DOI:10.1615/int.j.uncertaintyquantification.2022043110
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Emma R. Cobian;J. Hauenstein;Fang Liu;D. Schiavazzi
- 通讯作者:Emma R. Cobian;J. Hauenstein;Fang Liu;D. Schiavazzi
Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of soft tissue
软组织显式分布式结构分析中的数据驱动同步避免算法
- DOI:10.1007/s00466-022-02248-w
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Tong, Guoxiang Grayson;Schiavazzi, Daniele E.
- 通讯作者:Schiavazzi, Daniele E.
An ensemble solver for segregated cardiovascular FSI
用于分离心血管 FSI 的整体求解器
- DOI:10.1007/s00466-021-02076-4
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Li, Xue;Schiavazzi, Daniele E.
- 通讯作者:Schiavazzi, Daniele E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniele Schiavazzi其他文献
CT FFR Can Accurately Identify Culprit Lesions In Aorto-Iliac Occlusive Disease Using Minimally-Invasive Techniques
- DOI:
10.1016/j.avsg.2016.05.030 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Erin Ward;Daniele Schiavazzi;Divya Sood;John Lane;Erik Owens;Alison Marsden;Andrew Barleben - 通讯作者:
Andrew Barleben
Daniele Schiavazzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniele Schiavazzi', 18)}}的其他基金
Collaborative Research: CDS&E: Multifidelity Uncertainty Quantification Through Model Ensembles and Repositories
合作研究:CDS
- 批准号:
2104831 - 财政年份:2021
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Robust Diagnosis in Electronic Health Records Integrating Physics-based Missing Data Multiple Imputation, Fast Inference for Hemodynamic Models, and Differential Privacy.
电子健康记录中的稳健诊断集成了基于物理的缺失数据多重插补、血流动力学模型的快速推理和差分隐私。
- 批准号:
1918692 - 财政年份:2019
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Pooling INference and COmbining Distributions Exactly: A Bayesian approach (PINCODE)
准确地汇集推理和组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X027872/1 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Research Grant
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach (PINCODE)
池化推理和精确组合分布:贝叶斯方法 (PINCODE)
- 批准号:
EP/X028100/1 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Research Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
- 批准号:
2905812 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Studentship
Pooling INference and COmbining Distributions Exactly: A Bayesian Approach PINCODE
池化推理和精确组合分布:贝叶斯方法 PINCODE
- 批准号:
EP/X028712/1 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Research Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Bayesian Inference of Whole-Brain Directed Networks Using Neuroimaging Data
使用神经影像数据进行全脑定向网络的贝叶斯推理
- 批准号:
2242568 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Bayesian inference of the mode of speciation and gene flow using genomic data
使用基因组数据对物种形成和基因流模式进行贝叶斯推断
- 批准号:
BB/X007553/1 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Research Grant
Inform Shared Decision-making with Advanced Bayesian Causal Inference to Improve Quality of Pediatric Rheumatology Care
通过高级贝叶斯因果推理为共享决策提供信息,以提高儿科风湿病护理的质量
- 批准号:
10646649 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别: