Immune-compatible Designs of Electronic Polymers for Implantable Devices with Suppressed Foreign-Body Responses
用于抑制异物反应的可植入设备的电子聚合物的免疫兼容设计
基本信息
- 批准号:2105367
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYElectronic biomaterials have been more and more heavily used in/as bioimplants to directly interface with biological systems, inside live human and animal bodies. The resulted devices typically provide unparalleled functions in recording, studying and modulating biological processes and physiological conditions. However, the functional longevity of these materials under bio-implantation is commonly limited by the foreign-body responses elicited by immune systems. The material improvements for solving this problem, though highly desired, have been largely hindered by the lack of fundamental knowledge about the immune behavior at such material-biology interfaces, particularly with the influences from different material structures. In this research, aiming at closing this gap on electronic polymers—an emerging class of electronic material with higher mechanical compatibility with biological systems, Dr. Wang proposes to carry out fundamental biomaterial research on their interaction behaviors with immune-systems, especially at the cellular level. Dr. Wang will create electronic polymers with varied chemical structures, and perform in vitro cell experiments to characterize their interaction behaviors with different types of immune cells and environment during the typical foreign-body response process. This research will provide essential data for understanding the influence of different material design features on immune reaction pathways, and therefore guide the future development of immune-compatible electronic polymers. The research activities will provide learning and training opportunities for students at the interface of polymer science, electrical engineering, and immunology. Supported by this research project, a new program will be established with high schools in Chicago’s south side community to bring both high school teachers and students into the biomaterials research. The research and education results will be disseminated broadly through peer-reviewed publications, seminars, conference presentations, and websites. PART 2: TECHNICAL SUMMARYFor bioimplants that directly interface synthetic materials with biological cells and tissues in live biological systems, a long-standing challenge to be resolved is the commonly existing foreign-body responses elicited by immune systems. An emerging and promising direction for solving the immune-compatibility problem for implantable electronics is to use electronic polymers that have better mechanical compatibility with biological tissues. However, progress has been hindered by the lack of understanding and strategies for effectively combining molecular designs for immune-compatibility and electrical conduction on polymeric materials, without sacrificing the other. This research aims to establish the fundamental biomaterial understanding about the interaction behaviors between electronic polymers of varied conjugated backbones and side-chain structures with proteins and different immune cells that make the overall foreign body responses. Specifically, the study will include both commonly used design units for conjugated polymers, and newly incorporated immune-compatible groups for the possible improvement of immune-compatible properties. At the same time, for such new immune-compatible designs of electronic polymers, studies will also be carried out on their structure-property relationships in both electron and ion transport. The outcome of the research can be expected to initiate a new research direction for the field of biomaterials, which focuses on combining high electronic performance and immune compatibility in a single material. Broadly, this research will make the groundbreaking steps for realizing long-term biocompatible electronic polymers, which will largely benefit the technological areas of implantable electronics for medical diagnosis, disease treatment and biological studies. This interdisciplinary research will provide training opportunities for students at different stages for becoming the future workforce in the emerging area of biomaterials and electronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 非技术概述电子生物材料已经越来越多地用于生物植入物中/作为生物植入物,以直接与活的人类和动物体内的生物系统连接。由此产生的设备通常在记录、研究和调节生物过程和生理条件方面提供无与伦比的功能。然而,这些材料在生物植入下的功能寿命通常受到免疫系统引起的异物反应的限制。虽然非常期望解决这个问题的材料改进,但由于缺乏关于这种材料-生物学界面处的免疫行为的基本知识,特别是不同材料结构的影响,在很大程度上阻碍了材料改进。在这项研究中,旨在缩小电子聚合物-一种与生物系统具有更高机械相容性的新兴电子材料类别的差距,王博士建议对其与免疫系统的相互作用行为进行基础生物材料研究,特别是在细胞水平上。王博士将创造具有不同化学结构的电子聚合物,并进行体外细胞实验,以表征其在典型的异物反应过程中与不同类型的免疫细胞和环境的相互作用行为。该研究将为理解不同材料设计特征对免疫反应途径的影响提供必要的数据,从而指导免疫兼容电子聚合物的未来发展。研究活动将为学生提供学习和培训的机会,在聚合物科学,电气工程和免疫学的接口。在本研究项目的支持下,将与芝加哥南部社区的高中建立一个新的项目,将高中教师和学生带入生物材料研究。研究和教育成果将通过同行评审的出版物、研讨会、会议介绍和网站广泛传播。第二部分: 对于直接将合成材料与活生物系统中的生物细胞和组织连接的生物植入物,需要解决的长期挑战是由免疫系统引起的普遍存在的异物反应。解决植入式电子器件的免疫相容性问题的一个新兴且有前途的方向是使用与生物组织具有更好机械相容性的电子聚合物。然而,由于缺乏理解和策略,无法有效地将聚合物材料上的免疫相容性和导电性的分子设计结合起来,而不牺牲另一个,这阻碍了进展。本研究的目的是建立基本的生物材料的理解之间的相互作用行为的电子聚合物的各种共轭主链和侧链结构与蛋白质和不同的免疫细胞,使整体异物反应。具体而言,该研究将包括共轭聚合物的常用设计单元和新加入的免疫相容性基团,以可能改善免疫相容性。同时,对于这种新型免疫相容的电子聚合物设计,也将对其在电子和离子传输方面的结构-性能关系进行研究。该研究的成果有望为生物材料领域开创一个新的研究方向,该领域的重点是将高电子性能和免疫相容性结合在单一材料中。 从广义上讲,这项研究将为实现长期生物相容的电子聚合物迈出开创性的一步,这将在很大程度上有利于医疗诊断,疾病治疗和生物研究的植入式电子技术领域。这项跨学科的研究将为处于不同阶段的学生提供培训机会,使其成为新兴生物材料和电子领域的未来劳动力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sihong Wang其他文献
Chemical constituents of Hylotelephium erythrostictum
- DOI:
https://doi.org/10.1007/s10600-021-03571-z - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Yingyu Fang;Chunmei Jin;Xiumei Yin;Sihong Wang - 通讯作者:
Sihong Wang
Inhibition of leptinleptinr-kisspeptinkiss1r signaling pathway promotes follicular development in polycystic ovarian rats
抑制leptinleptinr-kisspeptinkiss1r信号通路促进多囊卵巢大鼠卵泡发育
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lingli Jiang;Ying Wang;Qinxia Pang;Lei Peng;Sihong Wang;Zhou Liu - 通讯作者:
Zhou Liu
Silver decorated hydroxides electrocatalysts for efficient oxygen evolution reaction
用于高效析氧反应的银装饰氢氧化物电催化剂
- DOI:
10.1016/j.cej.2022.136168 - 发表时间:
2022-04 - 期刊:
- 影响因子:15.1
- 作者:
Lingling Wu;Junjie Zhang;Sihong Wang;Qu Jiang;Ruohan Feng;Shenghong Ju;Wang Zhang;Fang Song - 通讯作者:
Fang Song
Dynamic effect of heat shock pretreatment on apoptotic responses to TNF-alpha in liver cells.
热激预处理对肝细胞TNF-α凋亡反应的动态影响。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Sihong Wang;Pohun C Chen;F. Berthiaume;M. Toner;A. Jayaraman;M. Yarmush - 通讯作者:
M. Yarmush
Anchoring Bimetal Single Atoms and Alloys on N-Doping-Carbon Nanofiber Networks for an Efficient Oxygen Reduction Reaction and Zinc–Air Batteries
将双金属单原子和合金锚定在氮掺杂碳纳米纤维网络上,以实现高效的氧还原反应和锌空气电池
- DOI:
10.1021/acsami.2c09271 - 发表时间:
2022 - 期刊:
- 影响因子:9.5
- 作者:
Bowen Liu;Sihong Wang;Ruohan Feng;Yuanman Ni;Fang Song;Qinglei Liu - 通讯作者:
Qinglei Liu
Sihong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sihong Wang', 18)}}的其他基金
CAREER: Stretchable Light-Emitting Polymers with Thermally Activated Delayed Fluorescence
职业:具有热激活延迟荧光的可拉伸发光聚合物
- 批准号:
2239618 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
I-Corps: 3D Microfluidic Cell Arrays for high throughput drug screening in tumor/tissue microenvironment
I-Corps:3D 微流控细胞阵列,用于肿瘤/组织微环境中的高通量药物筛选
- 批准号:
1343051 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Microfluidic 3D Apoptosis Cell Arrays
职业:微流控 3D 凋亡细胞阵列
- 批准号:
1055608 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Rapid-PROTOtyping-compatible, soft-micro-mould-tooled MANufacturing process chain
兼容快速原型设计的软微模具制造工艺链
- 批准号:
EP/Z001005/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Development of MRI-compatible Graphene-based Probes for Rodent and Human Electrophysiology
开发用于啮齿动物和人类电生理学的 MRI 兼容石墨烯探针
- 批准号:
EP/X013669/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Development of MRI-compatible Graphene-based probes for Rodent and Human Electrophysiology
开发用于啮齿动物和人类电生理学的 MRI 兼容石墨烯探针
- 批准号:
EP/X013693/1 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Research Grant
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246864 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Development of an fMRI compatible haptic feedback system using novel sensing and feedback modalities for human-machine interaction.
使用新颖的传感和反馈模式开发人机交互的功能磁共振成像兼容触觉反馈系统。
- 批准号:
23K13288 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of MRI-compatible hand haptic robot that opens the way for futuristic training methods
开发与 MRI 兼容的手部触觉机器人,为未来训练方法开辟了道路
- 批准号:
23K17453 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246863 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I-Corps: A magnetic resonance-compatible touchscreen with video display
I-Corps:具有视频显示功能的磁共振兼容触摸屏
- 批准号:
2331354 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
FET: Small: Increasing Robustness, Efficacy, and Capability of CMOS-Compatible Electronic Ising Machines
FET:小型:提高 CMOS 兼容电子发射机的鲁棒性、效率和能力
- 批准号:
2233378 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant